
HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

D4.2

First report on code profiling and bottleneck
identification, structured plan of forward activities

Carlo Cavazzoni, Fabio Affinito, Uliana Alekseeva, Claudia
Cardoso, Augustin Degomme, Pietro Delugas, Andrea Ferretti,

Alberto Garcia, Luigi Genovese, Paolo Giannozzi, Anton
Kozhevnikov, Ivan Marri, Stephan Mohr, and Daniel Wortmann

Due date of deliverable 31/08/2019 (month 9)
Actual submission date 31/08/2019

Lead beneficiary CINECA (participant number 8)
Dissemination level PU - Public

http://www.max-centre.eu 1

Ref. Ares(2019)5488775 - 30/08/2019

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type European Centre of Excellence in materials mod-

elling, simulations and design
EC Grant agreement no. 824143
Project starting/end date 01/12/2018 (month 1) / 30/11/2021 (month 36)
Website http://www.max-centre.eu
Deliverable no. D4.2

Authors Carlo Cavazzoni, Fabio Affinito, Uliana Alekseeva,
Claudia Cardoso, Augustin Degomme, Pietro Del-
ugas, Andrea Ferretti, Alberto Garcia, Luigi Gen-
ovese, Paolo Giannozzi, Anton Kozhevnikov, Ivan
Marri, Stephan Mohr, and Daniel Wortmann

To be cited as C. Cavazzoni et al. (2019): First report on code pro-
filing and bottleneck identification, structured plan
of forward activities. Deliverable D4.2 of the H2020
CoE MAX (final version as of 30/08/2019). EC
grant agreement no: 824143, CINECA, Bologna,
Italy.

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal
sources or the necessary advice of a legal expert, where appropriate. All information in
this document is provided “as is” and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user, therefore, uses the information at its
sole risk and liability. For the avoidance of all doubts, the European Commission has no
liability in respect of this document, which is merely representing the authors’ view.

http://www.max-centre.eu 2

http://www.max-centre.eu
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Contents

1 Executive Summary 5

2 Introduction 6

3 Scientific use cases 6
3.1 List of scientific use cases . 6

3.1.1 QUANTUM ESPRESSO . 6
3.1.2 Yambo . 11
3.1.3 FLEUR . 13
3.1.4 BigDFT . 14
3.1.5 CP2K . 15
3.1.6 SIESTA . 18

4 Profiling results, bottlenecks, and early actions 19
4.1 QUANTUM ESPRESSO . 19

4.1.1 Profiling on pw.x . 19
4.1.2 Profiling of pw.x on GPUs . 23
4.1.3 Profiling on cp.x . 24

4.2 Yambo . 29
4.2.1 Profiling on Yambo: the GW workflow 29
4.2.2 Defective TiO2 structure: MPI and OpenMP scaling 30
4.2.3 Chevron-like polymer: MPI scaling 33
4.2.4 Intra-node profiling on Yambo: GPUs 33

4.3 FLEUR . 38
4.3.1 Performance of the FLEUR MAX Release 3 38
4.3.2 New data layout . 40

4.4 BigDFT . 43
4.4.1 Uranium-dioxyde benchmarks - GPU 43
4.4.2 Bench Submission through AiiDA 45
4.4.3 Uranium-dioxyde benchmarks - KNL 46

4.5 CP2K . 48
4.5.1 RPA calculations with CP2K . 48
4.5.2 Linear scaling calculations . 49
4.5.3 Plane-wave pseudo potential calculations 50

4.6 SIESTA . 53

5 Structured plan of forward activities 59
5.1 QUANTUM ESPRESSO . 59
5.2 Yambo . 60
5.3 FLEUR . 61
5.4 BigDFT . 61
5.5 CP2K . 63
5.6 SIESTA . 63

6 Conclusion and lessons learned 65

http://www.max-centre.eu 3

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

References 66

http://www.max-centre.eu 4

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

1 Executive Summary

This deliverable sets the baseline for the performance and scalability status towards ex-
ascale of MAX applications, and at the same time identifies the key bottlenecks that
currently preclude MAX codes from efficiently executing a set of selected scientific use
cases on future European pre-exascale and exascale systems. It is important to remark
that MAX community codes are complex objects that can be configured to run in many
different ways, by changing several parameters. Moreover, the required computational
resources (time, memory, I/O, etc) connected to different input datasets may span several
orders of magnitude, thereby making the codes display very different computational be-
haviours. Being practically impossible to explore the whole space of possible working
conditions and parameters of MAX codes, we have decided to focus our effort on those
parameters that are potentially blocking for scientific use cases of interest for future ex-
ascale systems. We thus report on code profiling and bottleneck identification activities
referring to such use cases. While this does not necessary imply that other scientific use
cases may display the same bottlenecks or profiling patterns, the methodology and best
practices adopted in this deliverable can be easily extended to all other use cases.

Concerning the profiling, we have decided to consider the simulation wall-time as
the main performance metric, since the timing of the whole workflow is what actually
impacts the user perception and productivity. We have also decided that profiling and
bottleneck identification in particular should be referred as much as possible to well
identifiable kernels and modules (e.g.: "the code does not scale primarily because of
eigenvectors orthogonalisation"), since this can help both code experts and scientists to
review the applications. When a deeper analysis is needed –e.g., instruction or function-
level profiling–, we have decided to get in contact with the PoP CoE, since these activities
are at the core of their action and expertise. Given the evolution of HPC towards extreme
heterogeneity, a relevant advancement of this Deliverable is the systematic inclusion of
benchmarks on accelerated architectures.

All above decisions were taken as a result of several discussions during the first
months of activity, and finally reviewed in a three-day face-to-face meeting at CINECA
(Bologna, IT on July 10-12, 2019) involving people from Work Packages 1, 2, 3, and 4.

In this Deliverable, we report on the profiling and benchmarking campaign performed
along the above lines during the first months of MAX on its six flagship codes, QUAN-
TUM ESPRESSO, Yambo, FLEUR, BigDFT, CP2K, and SIESTA. Importantly, we have
started to collect benchmark/profiling curated data (including the scientific datasets) in a
MAX dedicated repository. On one side, this will allow code developers to automate the
collection process (e.g. via AiiDA) and to follow the evolution of the code performance
in time. On the other side it will make available the results to the broader community of
code users.

http://www.max-centre.eu 5

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

2 Introduction

As defined in the description of work, WP4 is responsible for profiling and benchmarking
releases of the MAX codes. This is done via a dedicated task, T4.4. The outcome of the
activities of this task is functional to many other tasks of other work packages (WP1,
WP2, WP3, and WP6) in order to provide feedback on identified code bottlenecks and
progresses obtained in terms of performance enhancement with respect of the relevant
metric (e.g. scalability, time to solution).

In particular, this report provides the baseline results for the first release of the MAX
flagship codes, to be used by all developers across the centre to measure the effectiveness
of the solutions adopted to improve code performance. The same information will be
used by other WP4 tasks to look for co-design opportunities (e.g. a bottleneck that is
linked to a specific hardware feature), or justify a proof-of-concept with a new paradigm
or software technology (e.g. if one of the adopted paradigm is found to be responsible
for poor performances).

This deliverable is organized as follows: in the first Section we report the selected
scientific use cases being used to define the performance and bottleneck baseline for the
different codes. The dataset for these use cases are stored in a dedicated MAX Gitlab
repository1 and made available to all MAX developers to be also used in the activities of
other WPs. In the second Section we report the results of the many benchmarks we have
run along with the identified bottlenecks, and early activities to solve them. In the third
Section we discuss on the activities planned to improve the codes towards the exascale
(for the given uses cases). Finally, conclusions and lessons learned are reported.

3 Scientific use cases

In this Section we report about the scientific use cases, datasets and profiling goals be-
hind the performance and bottleneck analysis performed in WP4. The cases reported are
relevant for future research projects that will run on next generation of European HPC
systems. It is therefore of fundamental importance for this community to ensure they will
run efficiently and without bottleneck preventing them to run at all.

The datasets are presented in a synthetic way using a template table, where the in-
formation available is presented with the same layout regardless of the code. The same
layout can be used also in future profiling campaign, making them easy to reproduce and
compare.

3.1 List of scientific use cases

The selected scientific use cases are reported as a collection of tables. More detailed
information and the actual datasets are stored in the MAX Gitlab repository.

3.1.1 QUANTUM ESPRESSO

For QUANTUM ESPRESSO we identify and collect 4 scientific use cases related to
different identified bottlenecks. The first dataset (Table 1) refers to a challenging whole

1https://gitlab.com/max-centre/benchmarks

http://www.max-centre.eu 6

https://gitlab.com/max-centre/benchmarks
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

protein DFT electronic structure simulation, meant to test the limits of both QE and
current HPC system. Indeed this kind of datasets could represent a valid alternative to
LINPACK for system evaluation and assessment, generating enough system load to stress
the supercomputer and providing speedup figures on real and relevant scientific use cases.
The second dataset (Table 2) has been selected for two reasons: it refers to Car-Parrinello
molecular dynamics simulation engine of QE and it is of industrial relevance, since it
was setup during an industrial prospect we run with a large European company. The third
dataset (Table 3) represents a typical materials science problem, similar to those scientists
are running today on high-end HPC system around the world and that is required to run
on next generation of supercomputer as well. Finally the fourth case (Table 4) represents
a challenging scientific benchmark, already reported in the literature [1], and subject of
a comparative study in the past with other codes [2]. These characteristics offer a good
opportunity to build a new baseline for the most up-to-date version of QE, to be used for
assessing the progress in term of efficiency and bottleneck removal.

Title Electronic structure of a 5H6V Protein in water
Short description of the
scientific use case

Compute ground state property and ab-initio molecular
dynamics (Car-Parrinello and Born-Oppenheimer) of a
small protein solvated in water. This simulation can be
applied to better understand protein-ligand interaction,
and improve molecular docking techniques applied in
drug design.

Target code cp.x and pw.x of QE 6.4.1
Description of the input
dataset

Atomic position of 5H6V protein plus solvation waters.
In total the system contain 7534 atoms of 5 species: N,
O, H, C and S. Pseudopotentials are ultrasoft in the
Vanderbilt form, the exchange and correlation is PBE.
For the DFT problem we use an energy cut-off of 25Ry.
It computes 12252 electronic states. It uses 16369
Kleinmann-Bylander projectors.

Target of the profiling
campaign / bottleneck

Code scalability and I/O

Target Supercomputer Marconi (KNL partition)
Target computational
resources

Simulation from 128 and 1024 compute nodes (8704
cores and 69632 cores), each simulation lasting approx
3 hours

Link to the dataset (if
available)

https:
//gitlab.com/max-centre/benchmarks/
tree/master/Quantum_Espresso/PW/5H6V
https:
//gitlab.com/max-centre/benchmarks/
tree/master/Quantum_Espresso/CP/5H6V

Link to the code source https:
//gitlab.com/QEF/q-e/-/tags/qe-6.4.1

Table 1: First scientific case for QUANTUM ESPRESSO: Electronic structure of 5H6V
protein in water

http://www.max-centre.eu 7

https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/5H6V
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/5H6V
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/5H6V
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/CP/5H6V
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/CP/5H6V
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/CP/5H6V
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title ZrO2 supercell
Short description of the
scientific use case

Compute ground state property and ab-initio molecular
dynamics of a ZrO2 supercell under pressure. This
dataset is part of an ongoing industrial prospect, and
details cannot be disclosed.

Target code cp.x and pw.x of QE 6.4.1
Description of the input
dataset

Atomic position of a ZrO2 supercell. In total the
system contain 792 atoms of 2 species: Zr and O.
Pseudopotentials are ultrasoft in the Vanderbilt form,
the exchange and correlation is PBE. For the DFT
problem we use an energy cut-off of 30Ry.

Target of the profiling
campaign / bottleneck

Code scalability and load balance

Target Supercomputer Marconi (KNL partition)
Target computational
resources

Simulation from 8 and 256 compute nodes (544cores
and 17408cores), each simulation lasting approx.
30minutes.

Link to the dataset (if
available)

Industrial prospect, dataset are not public

Link to the code source https:
//gitlab.com/QEF/q-e/-/tags/qe-6.4.1

Table 2: Second scientific case for QUANTUM ESPRESSO: ZrO2 supercell

http://www.max-centre.eu 8

https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title Graphene-Co-Ir
Short description of the
scientific use case

Graphene grown on non-commensurate transition metal
substrates forms a moire pattern that can be used as
templates for molecular adsorption and partial
molecule-substrate decoupling at the electronic level,
while maintaining the magnetic coupling. We will
compute the magnetic ground state of the
Graphene/Co/Ir slab. For a recent scientific publication
on the subject see Ref. [3].

Target code QE, pw.x
Description of the input
dataset

Atomic position of a 10x10/9x9/9x9 supercell, with a
total of 605 atoms with spin polarization (6 k-points,
2668 *2 KS states, 7.7 M G vectors, 256x256x270 FFT
grid). LDA exchange and correlation potential.
Pseudopotentials are norm conserving with an energy
cut-off of 75 Ry.

Target of the profiling
campaign / bottleneck

Code scalability (MPI, OpenMP, w/ and w/o GPU
support), and I/O

Target Supercomputer Marconi KNL, Piz-Daint
Target computational
resources

Marconi: 144 nodes, using 64 to 72 (hyper-threading)
cores per node (with omp_num_threads ranging from 1
to 4 at least). A full scf calculation is expected to last
about 5 hours. Piz-Daint: A number of nodes similar to
the KNL case, mostly looking at strong scaling

Link to the dataset (if
available)

https://gitlab.com/max-centre/
benchmarks/tree/master/Quantum_
Espresso/PW/GrCoIr

Link to the code source qe-6.4.1 from: https:
//gitlab.com/QEF/q-e/-/tags/qe-6.4.1
qe-gpu-6.4.1a1 from: https:
//gitlab.com/QEF/q-e-gpu/-/releases

Table 3: Third scientific case for QUANTUM ESPRESSO: Graphene-Co-Ir interfaces

http://www.max-centre.eu 9

https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/GrCoIr
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/GrCoIr
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/GrCoIr
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
https://gitlab.com/QEF/q-e-gpu/-/releases
https://gitlab.com/QEF/q-e-gpu/-/releases
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title Carbon Nanotube CNT10POR8
Short description of the
scientific use case

Compute ground state property and ab-initio molecular
dynamics (Car-Parrinello and Born-Oppenheimer) of
porphyrin functionalised carbon nanotube.

Target code cp.x and pw.x of QE 6.4.1
Description of the input
dataset

Atomic position of CNT10POR8 system. In total the
system contains 1532 atoms of 4 species: N, O, H, C.
Pseudopotentials are ultrasoft in the Vanderbilt form,
the exchange and correlation is PBE. For the DFT
problem we use an energy cut-off of 25Ry.

Target of the profiling
campaign / bottleneck

Code scalability and I/O

Target Supercomputer Marconi (KNL partition)
Target computational
resources

Simulation from 16 and 1024 compute nodes (1088
cores and 69632 cores), each simulation lasting in
approx 3 hours

Link to the dataset (if
available)

https://gitlab.com/max-centre/
benchmarks/tree/master/Quantum_
Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/
benchmarks/tree/master/Quantum_
Espresso/CP/CNT10POR8

Link to the code source https:
//gitlab.com/QEF/q-e/-/tags/qe-6.4.1

Table 4: Fourth scientific case for QUANTUM ESPRESSO: Carbon Nanotube
CNT10POR8

http://www.max-centre.eu 10

https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/CP/CNT10POR8
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/CP/CNT10POR8
https://gitlab.com/max-centre/benchmarks/tree/master/Quantum_Espresso/CP/CNT10POR8
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
https://gitlab.com/QEF/q-e/-/tags/qe-6.4.1
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

3.1.2 Yambo

For Yambo we have identified and collected two scientific use cases related to differ-
ent bottlenecks. More in details, scalability (both MPI and OpenMP) and profiling tests
have been performed considering two systems of physical interest with different compu-
tational characteristics. The first use case that we have considered is a defective TiO2

bulk supercell, having a cell of 72+1 atoms, 8 k-points, and a medium range number of
plane waves (about 5×105 to represent the density). Wavefunctions have been further
truncated and represented using 40000 plane waves, while up to 2000 states are included
in the sum-over-states. We have used this system to study both the MPI and OpenMP
scaling of the code. The second use case that we have considered is a much larger low-
dimensional system, a 1D chevron-like Graphene nanoribbon. The system has 136 atoms
and still 8 k-points, but sits in a much larger supercell, described by means of 3.5 million
plane waves (for the density). The sum-over states are performed considering 800 bands
(each represented by 4.5×105 plane waves). More details of the systems studied and the
results targeted are described below.

Title Defected TiO2 structures
Short description of the
scientific use case

Defects in TiO2 have a key role in the determination of
its electrical conductivity and optical properties. We
will perform a GW calculation as implemented in
Yambo of a defective TiO2 bulk supercell. This class of
systems (defected TiO2) is relevant for photocatalytic
applications and is currently the subject of a large
amount of research. A recent publication on the subject
can be found e.g. in Ref. [4].

Target code Yambo (GW, BSE calculations)
Description of the input
dataset

H-defected TiO2 2x2x3 supercell, with 72 +1 (H)
atoms (577 electrons, treated non-spin-polarised). The
system is described using 8 k-points and to 2000 bands
in the sum-over-states. The polarisability cutoff is set to
6 Ry (1317 G-vectors).

Target of the profiling
campaign / bottleneck

Overall total time-to-solution, strong scaling (and
bottleneck spotting), memory handling.

Target Supercomputer Marconi KNL
Target computational
resources

Marconi: from 40 to 320 KNL nodes

Link to the dataset (if
available)

https://gitlab.com/max-centre/
benchmarks/tree/master/Yambo

Link to the code source Yambo 4.5 devel version, rev:16810 hash:29d3c00a8
(hosted in a private repo)

Table 5: First scientific case for Yambo: Defected TiO2 structures

http://www.max-centre.eu 11

https://gitlab.com/max-centre/benchmarks/tree/master/Yambo
https://gitlab.com/max-centre/benchmarks/tree/master/Yambo
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title Graphene Nanoribbons
Short description of the
scientific use case

One dimensional percursor polymer for graphene (GR)
nanoribbon (GNR) with chevron-like shape. Relevant
for optical properties (optoelectronic devices), it is a
quite large nanostructure made by C and H with al arge
number of plane waves involved in the simulations
using both QE and Yambo. A recent publication on the
electronic and optical properties of this system is in
Ref. [5].

Target code Yambo (GW calculations)
Description of the input
dataset

The system contains 136 atoms (C and H) and sits in a
large unit cell of 32×66×40 Bohr3, leading to
3.500.000 (450.000) G-vectors for the density
(wavefunctions). The system is described using 8
k-points and 800 bands in the sum-over states. A cutoff
of 3 Ry is used to describe the polarisability (leading to
7423 G-vectors).

Target of the profiling
campaign / bottleneck

Overall total time-to-solution, strong scaling (and
bottleneck spotting), memory handling. Marconi KNL

Target Supercomputer Marconi KNL
Target computational
resources

Marconi: 128 / 256 / 512 / 768 KNL nodes

https://gitlab.com/max-centre/
benchmarks/tree/master/Yambo

Link to the code source Yambo 4.5 devel version, rev:16810 hash:29d3c00a8
(hosted in a private repo)

Table 6: Second scientific case for Yambo: Graphene Nanoribbons

http://www.max-centre.eu 12

https://gitlab.com/max-centre/benchmarks/tree/master/Yambo
https://gitlab.com/max-centre/benchmarks/tree/master/Yambo
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

3.1.3 FLEUR

For FLEUR two use cases have been set up that can be used to investigate different
bottlenecks. Both focus on demonstrating the scalability of the main parts of the code, in
particular of the Hamiltonian setup and the MPI communication. While the first system
is a simple TiO2 insulator with point defects with two setups of 1078 and 2156 atoms
respectively, the second system is a single setup of a 3750 atoms SrT iO3. Despite its
larger number of atoms, the strong asymmetry of the second system will require the
use of more k-points and hence add the aspect of scalability in the combined k-point
and eigenvalue MPI parallelization. It is also planed to use it to investigate possible
bottlenecks in some property calculators, e.g. to see conducting defect states.

Title TiO2 structure with defects
Short description of the
scientific use case

Ground state properties

Target code FLEUR
Description of the input
dataset

Two test cases: with 1078 and 2156 atoms.

Target of the profiling
campaign / bottleneck

Scalability, Hamiltonian setup, MPI communication

Target Supercomputer CLAIX2016, CLAIX2018, Hazel Hen, SuperMUC-NG
Target computational
resources

CLAIX2016 and Hazel Hen: up to 256 nodes;
CLAIX2018 and SupeMUC-NG: up to 512 nodes

Link to the dataset (if
available)

1078 atoms: https:
//gitlab.com/max-centre/benchmarks/
tree/master/FLEUR/fleur_big_TiO2_conv
2156 atoms: https://gitlab.com/
max-centre/benchmarks/tree/master/
FLEUR/fleur_huge_TiO2_conv

Link to the code source https://www.flapw.de/site/downloads/

Table 7: First scientific case for FLEUR: TiO2 structure with defects

http://www.max-centre.eu 13

https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_big_TiO2_conv
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_big_TiO2_conv
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_big_TiO2_conv
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_huge_TiO2_conv
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_huge_TiO2_conv
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_huge_TiO2_conv
https://www.flapw.de/site/downloads/
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title SrTiO3 structure with dislocations
Short description of the
scientific use case

Ground state properties, electrical conductivity

Target code FLEUR
Description of the input
dataset

Atom positions of 3750 atoms.

Target of the profiling
campaign / bottleneck

Scalability, Hamiltonian setup, MPI communication

Target Supercomputer CLAIX 2018, Hazel Hen, SuperMUC-NG
Target computational
resources

CLAIX 2018: 512 nodes for 1 k-point; Hazel Hen:
1024 nodes for 1 k-point, 4096 nodes for 4 k-points;
SuperMUC-NG: 512 nodes for 1 k-point, 2048 nodes
for 4 k-points

Link to the dataset (if
available)

https:
//gitlab.com/max-centre/benchmarks/
tree/master/FLEUR/fleur_huge_SrTiO3

Link to the code source https://www.flapw.de/site/downloads/

Table 8: Second scientific case for FLEUR: SrTiO3 structure with dislocations

3.1.4 BigDFT

The physical test system is Uranium dioxide, which, being the most widely used nuclear
fuel, is both a technologically important and scientifically interesting material, where hy-
brid functional DFT calculations could play a more important role if they become less
expensive. Aside from these points, our motivation in choosing this system was primar-
ily the fact that it is challenging element to simulate, as it contains a large number of
electrons even when using a pseudopotential approach. We used an uranium pseudopo-
tential with 14 electrons and an oxygen pseudopotential with 6 electrons. Furthermore
it requires a spin polarized treatment, with non identical spin up and down orbitals. We
used 5 different periodic cells covering a wide range of sizes, namely a small cell (12
atoms), a medium sized cell (96 atoms), large cells (324 and 768 atoms) and a very large
cell containing 1,029 atoms. Our largest system contained 17,150 Kohn-Sham orbitals.

http://www.max-centre.eu 14

https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_huge_SrTiO3
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_huge_SrTiO3
https://gitlab.com/max-centre/benchmarks/tree/master/FLEUR/ fleur_huge_SrTiO3
https://www.flapw.de/site/downloads/
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title UO2
Short description of the
scientific use case

Ground state properties of a challenging metal oxyde
with hybrid functionals

Target code BigDFT
Description of the input
dataset

Uranium dioxide, several cell sizes, large number of
electrons. Inputs ranging from 164 to 17150
Kohn-Sham orbitals

Target of the profiling
campaign / bottleneck

Scalability of the CPU and GPU implementation for
PBE and PBE0 functionals, overlapping between MPI
communication and computation. Computational cost
evaluation of a hybrid functional.

Target Supercomputer Piz Daint/Marconi
Target computational
resources

Marconi: 400 - 800 KNL nodes; Piz Daint: Up to 1600
nodes (with/without GPU)

Link to the dataset (if
available)

https://gitlab.com/max-centre/
benchmarks/tree/master/BigDFT/UO2

Link to the code source http://bigdft.org

Table 9: First scientific case for BigDFT: UO2

3.1.5 CP2K

The aim of the profiling performed on CP2K is to isolate and benchmark performance-
critical parts of the code relevant for the scientific cases (Tab. 10, 11). For the scientific
case (Tab. 12) the task is to create a base line plane-wave simulation with the SIRIUS
back end (already fully GPU accelerated) and track the performance improvements for
the duration of the project.

http://www.max-centre.eu 15

https://gitlab.com/max-centre/benchmarks/tree/master/BigDFT/UO2
https://gitlab.com/max-centre/benchmarks/tree/master/BigDFT/UO2
http://bigdft.org
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title RPA calculations on large condensed phase systems.
Short description of the
scientific use case

RPA presents an import post-DFT approach to
electronic structure, and CP2K has unique capabilities
to compute the RPA energy (and related properties) for
large condensed phase systems, featuring both O(N4)
and O(N3) algorithms. The former is faster for 3D
systems up to a few hundred atoms, and currently used
in most applications. This O(N4) algorithm is to target
of this benchmark.

Target code CP2K, RPA functionality
Description of the input
dataset

The dataset consists of 128 water molecules in a cubic
box, representative of liquid water. The water
molecules are described with a high quality basis
(correlation consistent triple-zeta basis, 53 basis
functions per molecule).

Target of the profiling
campaign / bottleneck

These calculations are dominated by tensor
contractions, that are implemented as dense linear
algebra operations, mostly PDGEMM. In the selected
benchmark, this routine dominates the calculation,
accounting for 90% on 128 nodes of Piz Daint. The aim
of this work is to integrate a highly performing,
communication optimal PDGEMM implementation
(COSMA) that is available for both GPU and CPU
architectures.

Target Supercomputer Current result will be obtained on Piz Daint, future
results will be obtained for the EuroHPC architectures,
as well as internationally leading supercomputers in the
US.

Target computational
resources

This kind of calculation can be scaled to large number
of nodes, we aim at 64 – 1024 nodes.

Link to the dataset (if
available)

https://github.com/cp2k/cp2k/tree/
master/tests/QS/benchmark_mp2_rpa

Link to the code source https://github.com/cp2k/cp2k

Table 10: First scientific case for CP2K: RPA calculations

http://www.max-centre.eu 16

https://github.com/cp2k/cp2k/tree/master/tests/QS/benchmark_mp2_rpa
https://github.com/cp2k/cp2k/tree/master/tests/QS/benchmark_mp2_rpa
https://github.com/cp2k/cp2k
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title Linear scaling DFT calculations for very large systems.
Short description of the
scientific use case

CP2K features the capability to perform accurate DFT
calculations on systems containing thousands of atoms,
using a linear scaling implementation of DFT. This
benchmark is an established test case to measure the
performance of the underlying software infrastructure.
This infrastructure is largely given by a sparse matrix
library (DBCSR), which is is particularly optimized to
perform sparse matrix - matrix multiplications in
parallel for a variety of architectures, including both
CPUs and GPUs. Furthermore, the use of this library
extends beyond linear scaling DFT, as it finds
application in low order correlated wavefunction theory
(e.g. O(N3) RPA).

Target code CP2K and its DBCSR library, in particular the
architecture specific backends (e.g. libcusmm).

Description of the input
dataset

The input data consists of a large sample of liquid
water, namely 20736 atoms (≈ 7000 molecules).
Different atom centered basis sets will be employed.

Target of the profiling
campaign / bottleneck

Sparse matrix multiplication, and in particular small
matrix multiplication: DBCSR and libcusmm.

Target Supercomputer see above
Target computational
resources

Full simulation runs on 256 nodes. Main target is single
node kernel performance (e.g. CUDA, AMD, etc.)

Link to the dataset (if
available)

https://github.com/cp2k/cp2k/tree/
master/tests/QS/benchmark_DM_LS

Link to the code source https://github.com/cp2k/cp2k
https://github.com/cp2k/dbcsr

Table 11: Second scientific case for CP2K: Linear scaling DFT

http://www.max-centre.eu 17

https://github.com/cp2k/cp2k/tree/master/tests/QS/benchmark_DM_LS
https://github.com/cp2k/cp2k/tree/master/tests/QS/benchmark_DM_LS
https://github.com/cp2k/cp2k
https://github.com/cp2k/dbcsr
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Title Plane Waves DFT calculations
Short description of the
scientific use case

Ground state calculation of carbon materials
(buckyball) using plane-wave basis set.

Target code CP2K + SIRIUS
Description of the input
dataset

A single molecule of C60 in a box. This test covers the
cases of large FFT grids and small number of atoms.

Target of the profiling
campaign / bottleneck

SIRIUS plane-wave DFT implementation, in particular
the MaX-developed SpFFT library.

Target Supercomputer Piz Daint and future AMD-based supercomputers
Target computational
resources

4-64 hybrid nodes of Piz Daint

Link to the dataset (if
available)

https://github.com/cp2k/cp2k/tree/
matster/tests/QS/benchmark_SIRIUS

Link to the code source https://github.com/cp2k/
https://github.com/
electronic-structure/SIRIUS

Table 12: Third scientific case for CP2K: plane wave DFT calculations

3.1.6 SIESTA

We have chosen as a use case the simulation of a large system of biological interest
(DNA), which at the same time provides a rather complete stress-test of the code. Besides
the sheer number of atoms and orbitals (up to the order of 100k), which is a relevant
figure for the solver stage, the appearance of several atomic species (five: C, H, O, N, P)
increases the complexity and thus the relative weight of the Hamiltonian setup phase.

Title Electronic structure of a section of DNA
Short description of the
scientific use case

This simulation can be used to determine the charge
profile of DNA and other properties relevant to
understand its dynamics.

Target code Siesta 4.2-rc0 (development version)
Description of the input
dataset

A short section of DNA, with around 715 atoms, that
can be replicated to obtain larger target systems for
scalability test purposes. The largest system foreseen
contains around 11400 atoms.

Target of the profiling
campaign / bottleneck

Code scalability and I/O, in the initialization, setup of
the Hamiltonian, and solver phases.

Target Supercomputer MareNostrum IV (BSC)
Target computational
resources

From 96 to 2304 cores.

Link to the dataset (if
available)

https://gitlab.com/max-centre/
benchmarks/tree/master/Siesta/BSC-DNA

Link to the code source http://launchpad.net/siesta (trunk
version)

Table 13: First scientific case for Siesta: Electronic structure of a section of DNA

http://www.max-centre.eu 18

https://github.com/cp2k/cp2k/tree/matster/tests/QS/benchmark_SIRIUS
https://github.com/cp2k/cp2k/tree/matster/tests/QS/benchmark_SIRIUS
https://github.com/cp2k/
https://github.com/electronic-structure/SIRIUS
https://github.com/electronic-structure/SIRIUS
https://gitlab.com/max-centre/benchmarks/tree/master/Siesta/BSC-DNA
https://gitlab.com/max-centre/benchmarks/tree/master/Siesta/BSC-DNA
http://launchpad.net/siesta
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

4 Profiling results, bottlenecks, and early actions

4.1 QUANTUM ESPRESSO

4.1.1 Profiling on pw.x

The application pw.x contained in the QUANTUM ESPRESSO suite performs total en-
ergy and force calculations with plane waves and pseudopotentials or using the PAW
formalism. The methodology is based on a self-consistent loop, consisting of the follow-
ing main computational tasks:

• The iterative diagonalisation of the trial Hamiltonian (H) computing the lowestNB

eigenvalues and eigenfunctions (ψ). NB must be at least as large as the number of
electronic states which are needed to build the self-consistent density, though some
post-processing or spectroscopic applications may require to further increase this
number. NB depends upon the number and type of atoms contained in the sim-
ulation cell. For periodic systems the Hamiltonian can be split into independent
blocks, one per k-point (Bloch vector), on which, at each step, the iterative diag-
onalisation can be performed concurrently by a distinct MPI group. We will refer
to this as pool parallelism. The same pool parallelism is applied if the system is
spin-polarised, adding a net factor of two to the maximum number of usable pools;

• A sum of the contributions of each wave function to the total density. This sum
runs through all occupied bands and k-points;

• A mixing of the input density with the newly computed density;

• The computation of the new Hamiltonian operator.

If not adequately implemented, each of these steps may become a bottleneck for very
large systems. The most expensive operation is typically the calculation of Hψ prod-
ucts used in the iterative diagonalisation, involving both local and nonlocal potentials,
respectively computed in the real-space and reciprocal-space grids. The number Nproj

of non-local operators (projectors) depends upon the number and type of atoms. In order
to apply the local and non-local potentials and to compute the charge density, the wave
functions need to be transferred from the real-space to the reciprocal-space representa-
tion, and vice versa. This is done using parallel 3D FFT transforms. The data distributed
on 3D grids represent also the major memory requirement of the program and thus the
distribution of FFT 3D grids among MPI tasks is used to distribute the memory as well
as the computational workload.

Performance profiling [6] done during the operation of MAX phase 1 has shown that
for small- and medium-size calculations (up to a few hundreds atoms in the simulation
cell, up to a few thousands for both NB and Nproj) the main bottleneck is constituted by
the parallel FFT performance. These findings are, for the FFT part only, confirmed by
the results for the use case in Tab. 4 as shown in Fig. 1. We defer the discussion of the
linear-algebra term (_diaghg) to the large-size case. Parallel FFT satisfactorily reduces
the total wall-time as long as the number of MPI tasks is smaller than or comparable
to the linear dimensions of 3D FFT grids. When the number of MPI tasks exceeds this
number, the scaling becomes poorer. Actions on this side include:

http://www.max-centre.eu 19

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 1: Scaling on use case presented in Tab. 4. Total WALL time and h_psi part
scale with FFT up to 2048 cores: beyond that, scaling becomes non-optimal. Exact
diagonalisation (_diaghg) with parallel linear algebra (ScaLAPACK) scales up to a
16×16 BLACS grid (256 MPI tasks). The number of tasks used for parallel linear algebra
are indicated by the yellow labels. 4 OpenMP threads per MPI task are used for all runs.

• Improvements on the granularity of the real and reciprocal distribution over MPI
tasks, i.e., make the distribution more flexible so that grids can be distributed on
more tasks;

• Extension of threaded parallelism in order to exploit more efficiently as many pro-
cessors as possible in shared memory tasks, as soon as MPI FFT scaling starts to
saturate and in case the memory node capabilities limit the number of MPI tasks
per node.

We also expect that next accelerated architectures will allow the code to contain the
FFT grids of small and medium size systems in one node and to offload FFT and re-
ciprocal space operations directly to the accelerators. With these improvements and the
adaptation to accelerators (see next Section), we are confident that the code will be able
to exploit efficiently the advancements which will gradually be brought in by the advent
of pre-exascale machines.

In large-size computations, where the 3D grids largely exceeds the capacities of a sin-
gle node, the FFT part scales satisfactorily, but new computational issues are introduced
by the growing number Na of atoms, as the largest of our scientific test cases (Tab. 1)
demonstrates. For such case, Na is already O(104), but with the advent of exascale
machines it is foreseeable that users will try to simulate even larger systems.

The timing, scaling, and partition of the computational wall-time for our largest test
case are shown in Fig. 2. Although the number of MPI tasks used is already beyond
the optimal scalability range for FFT and parallel matrix multiplication, we still have a
significant scaling of the h_psi sections (540 sec for the 512 MPI × 16 OpenMP vs.

http://www.max-centre.eu 20

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 2: Scalability of pw.x for protein 5H6V case. The parts in yellow (rdiaghg)
contain library calls to ScaLAPACK/ELPA exact diagonalisation libraries. The parts in
blue (h_psi) contain FFTs and parallel matrix multiplications. The parts in green (s_psi)
contain parallel matrix multiplications only.

333 sec for the 2048 MPI × 16 OpenMP). These times are however a small percentage
of the total time and improvement on this side will bring only a minor improvement to
the overall scalability. Significant portions of the time is instead spent inside exact di-
agonalisation driver routine (rdiaghg sections of Figs. 2 and 3), which takes 1350 sec
with 2048 MPI tasks and 1790 sec with 512 MPI tasks. As anticipated above, this over-
whelming cost and poor scaling are caused by the unprecedented number of bands used
by the computation.

The most efficient iterative diagonalisation algorithm currently present in the pw.x
code is block Davidson, which requires repeated exact diagonalisations of a ND × ND

matrix with ND at least two times the number of bands NB . These exact diagonalisa-
tions are performed by the library LAXLib, that uses ScaLAPACK and ELPA to achieve
parallelisation. When however NB exceeds 12000 as in our case, these exact diagonali-
sations become the dominant term, scaling poorly even if efficient parallel linear-algebra
libraries are used. In our calculation, over 25% of the time is spent in performing the
parallel exact diagonalisation.

One relevant issue with unmonitored parts for the code has emerged during these
profiling sessions: a rather large portion of compute time, tagged as other in Fig. 2, could
not be assigned to any of the main computational kernels. Profiling tools turned out to be
useless: none worked properly, presumably due to the size of the run. It emerged from
our analysis that the origin of such bottleneck lies in real-space Ewald sums that were
not parallelised at all. The time spent in such part is usually negligible in DFT ab-initio
computations (unlike in classical MD) but increases quadratically with Na and becomes

http://www.max-centre.eu 21

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 3: Scalability of pw.x for protein 5H6V case, after the removal of the Ewald sum
bottleneck.

large as Na approaches 10K. As an early activity on the code optimisation, we were
able to solve this bottleneck by parallelising the Ewald sums over atoms. This already
improves the efficiency of the code at this scale for the benefit of the scientists willing to
use it in their next HPC projects (e.g. PRACE or EuroHPC). The improved scalability,
with a much smaller other section, is reported in Fig. 3.

The calculations ofHψ products (labeled in Fig. 2 as h_psi) can also be parallelised
on bands, introducing MPI band groups, but currently only one of these band groups
is used for exact diagonalisation. This forces the code to collect the results from other
groups and reduces the number of MPI tasks usable in exact diagonalisation, significantly
reducing the advantages (see Tab. 14) of band parallelisation for large-size systems.

tasks band-groups h_psi rdiaghg s_psi other total calbec
1024 1 854 663 79 – 1596 210
1024 2 561 746 75 186 1569 161
2048 1 668 593 57 – 1450 205
2048 2 485 673 55 205 1418 134

Table 14: Iterative diagonalisation times (sec) for different band parallelism settings for
the 5H6V case: The timing of h_psi scales down, but the overall scaling is limited
by parallel linear algebra (rdiaghg) and communication time (included in the other
section).

http://www.max-centre.eu 22

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

The profiling with very large systems has also shown that I/O may become an issue
for computations of such size.

• Currently pseudopotentials and restart information (an XML file) are indepen-
dently read by each MPI task; with thousands of MPI tasks this may cause a sig-
nificant slow down of reading operations.

• Together with the charge density, the program saves on exit the reciprocal space
components of the wave functions. In test cases with more than a thousand wave
functions, the termination phase takes a significant time.

A final possible source of bad scaling for giant calculations is the large number of
projectors. The usage of projectors involves operating with matrices with dimensions
Nproj × NB . The cost of building these matrices is usually negligible and so far not
monitored by clocks, but may become sizable for large-size calculation. The memory
footprint of these matrices may also become a problem.

4.1.2 Profiling of pw.x on GPUs

Since version 6.4.1 of QUANTUM ESPRESSO, pw.x can be used on systems equipped
with GPUs. As the compilation for GPUs requires a specific setup and linking to archi-
tecture specific libraries, the code is distributed GPU-ready via a dedicated repository
together with specific routines. Users willing to compile and use pw.x on GPU-enabled
architectures may find the code at https://gitlab.com/QEF/q-e-gpu .

The most computation-intensive kernels executed with GPU acceleration are the par-
allel linear algebra and, at variable levels depending upon the system size, the FFT rou-
tines. If the memory of a node is sufficient to store all 3D grid data, 3D FFTs are per-
formed directly with GPU-specific libraries using devices on one node. When instead
it is necessary to distribute 3D data among MPI tasks, the GPU acceleration is used to
perform local 1D and 2D FFT operations and data are then scattered via MPI in order
to perform the net 3D FFT operation. In the most common setup of GPU devices, this
requires frequent data transfer between device and host memory. In order to improve
the computational efficiency, local FFT operations and MPI data scattering are thus done
concurrently on different batches of wave functions; while a batch is processed by the
GPU, other batches are scattered via non-blocking MPI.

The benchmarking of pw.x on GPUs has been done running the scientific test case
described in Tab. 3. The size of this test case is such to require the 3D distribution on
at least 60 MPI tasks per pool. Parallel linear algebra is performed using GPU-specific
libraries on a single GPU. The number of bands (here over 2600) is in fact close to the
limit that fits into the device memory of current Piz Daint nodes. For this reason, it is nec-
essary to use the Davidson algorithm limiting the leading dimension of the Hamiltonian
matrix representation in the iterative space to its minimal value ND = 2 ×NB ' 5000.
We have run the calculations from scratch to full solution. This requires 48 successive
iterative diagonalisation loops. The Hamiltonian is divided into 12 irreducible blocks for
which iterative diagonalisation may be run independently. The different parallel setting
are summarised in Tab. 15.

As can be seen in Fig. 4, the time-to-solution scales down increasing the number
of pools. The pool scalability, in principle linear, is impaired because the Hamiltonian

http://www.max-centre.eu 23

https://gitlab.com/QEF/q-e-gpu
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

MPI tasks Pools tasks per pool time to solution (secs)
72 1 72 26774
144 1 144 25656
144 2 72 17363
240 4 60 10349

Table 15: Different setups used to run the scientific use case on Tab. 3 on the cluster
PiZ-Daint@CSCS with GPUs.

blocks require a widely variable number of iterations. In this scenario, distributing the
blocks among pools levels the average time per block of each pool up to the most ex-
pensive one. When the number of pools is equal to the number of blocks, all pools are
constrained by the slowest block.

As we have a moderately large number of bands, the iterative space of the Davidson
eigensolver is over 5000× 5000, and the exact diagonalisations are thus computationally
important. This part of the computation, labeled as _diaghg in Fig. 5, is performed
using specific routines for accelerated linear algebra on GPUs. For this reason, this part
is almost independent on the number of MPI tasks per pool. Overall the exact diago-
nalisation time slightly increases with the number of MPI tasks because of the increased
communication costs needed to build the representation of the Hamiltonian in the itera-
tive space.

The other part of the iterative diagonalisation time, labeled as h_psi in Fig. 5 , uses
instead MPI parallelism on 3D data on real and reciprocal space performing 3D FFT
operations or matrix vector products as those computed in vloc_psi and calbec. The
behaviour of these routines with respect to the number of MPI tasks per pool is presented
in Fig. 6. While calbec shows some scaling as the number of tasks per pool increases,
vloc_psi (whose task includes two 3D FFT operations) is completely saturated at a
value around 72 tasks per pool.

4.1.3 Profiling on cp.x

The application cp.x contained in the QUANTUM ESPRESSO suite performs the canon-
ical Car-Parrinello ab-initio molecular dynamic simulation, sharing most of the modules,
subroutines and parallelisation strategy with pw.x. In particular, considering the most
time consuming kernels, the FFT kernel is the same and is used in the same way in both
codes. This kernel was the object of a heavy refactoring in the previous phase of the
MAX project, and its scalability was improved significantly for both codes, especially
for large atomic systems running on many thousands of nodes. In fact from the perfor-
mance analysis on both codes presented in this chapter, the FFT was not the main source
of performance problems for large-size systems. Instead, it is evident that linear algebra
constitutes now the most critical kernel for both codes. Here cp.x and pw.x share the
same low level linear algebra drivers, but differ in the way the eigenstates are computed.
In pw.x they are obtained by iterative diagonalisation of the Hamiltonian matrix (see
Section above), while in cp.x they are first obtained by minimising the Car-Parrinello
Lagrangian, then propagated adiabatically together with the ions. While they are propa-
gated they are kept orthogonal by applying an orthogonality constraint on the electronic

http://www.max-centre.eu 24

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

(a) Time to solution vs. npool

(b) Time to solution per block vs npool

Figure 4: Average time per pool evaluated with different pool distributions.

http://www.max-centre.eu 25

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 5: The iterative diagonalisation times for the different adopted setups. The time
per block is decomposed in h_psi and _diaghg, this latter is the exact diagonalisation
in the iterative space. The 2 different setups at 72 tasks per pool correspond respectively
to rows 1 and 3 of Tab. 15, the difference between the two is mostly due to the deviations
from linearity of pools parallelism.

Figure 6: Total times per block of general MPI parallel routines vloc_psi and
calbec, the value at 72 tasks per pool is obtained as average of setups 1 and 3 in
Tab. 15.

http://www.max-centre.eu 26

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

degree of freedom. This operation is performed in the ortho kernel, which implements
an iterative constraint refinement, by applying an exact diagonalisation and a sequence
of matrix multiplications. on matrices of NB ×NB size, to solve the constraint equation.

For the scientific use case ZrO2, used in a prospect for a service required by an
industrial user, we performed several runs for different combinations of parallelisation
parameters. The results are shown in Fig. 7. There we reported the total loop time
(main_loop) and the time taken by the ortho kernel. While for a relatively small number
of cores (i.e. 512) the ortho time is almost negligible, at 16000 cores the time taken by the
ortho kernel represents more than 50% of the total loop time, and its scalability profile
is flat (i.e. it does not scale) from 512 to 16000 core. Analysing the code, we traced
back the cause to a sub-optimal parallelisation of matrix multiplications, with doubly
distributed matrices: over the linear algebra ortho group, and over the band group. In
order to accelerate this scientific use case and make the code more efficient for large
core counts (e.g. a system partition of roughly 1 PFlop/s peak performance), we need to
improve the ortho kernel as the first priority.

http://www.max-centre.eu 27

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 7: Scalability of cp.x for ZrO2 case. For each number of cores, we tested dif-
ferent numbers of task group, from 1 to 16. The best number of task group for each
number of cores give the best performance and scalability for the code. We also plotted
the profile of the orthogonalisation kernel, which is almost flat. This is not an issue with
small number of cores, since its time is much less than the rest of the code, but prevent
the code to scale above 10000 cores.

http://www.max-centre.eu 28

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

4.2 Yambo

4.2.1 Profiling on Yambo: the GW workflow

Yambo is an ab-initio code for calculating quasiparticle corrections and optical prop-
erties within the framework of many-body perturbation theory. Yambo relies on the
Kohn-Sham (KS) wavefuntions generated by the DFT pw.x code of the QUANTUM

ESPRESSO package through the interface p2y (PWscf to Yambo interface). Quasipar-
ticle (QP) energies are obtained within the GW approximation for the self-energy. The
calculation of QP corrections is made by the following main tasks:

(i) Calculation of dipole matrix elements. The dipole matrix element between the
states |nk〉 and |mk〉 (typically one occupied and one empty) is defined as rnmk =
〈nk | r | mk〉, and is computed within periodic boundary conditions using the relation
[r, H] = p + [r, Vnl], leading to:

rnmk =
〈nk | p + [r, Vnl] | mk〉

εnk − εmk
(1)

where εnk are KS energies. Computationally, the calculation of dipoles involves a reduc-
tion over space degrees of freedom (G, here) for every k-point and nm pairs (usually
Nk × Nocc × Nempty reductions to compute). Both wavefunctions and β projectors are
needed, making the kernel both I/O and memory intense. Dipole matrix elements can be
evaluated using several approaches (i.e. G-space v, shifted grids, Covariant, and R-space
x approach, see Ref. [7] for more details). Profiling and benchmarking tests have been
performed using the G-space v procedure.

(ii) Calculation of density response function in the independent particle approxima-
tion, that is:

χ0
GG′(q, ω) =

fs
NkΩ

∑
nmk

ρnmk(q,G)ρ?nmk(q,G′) (2)

×
[fmk(1− fnk−q)

ω − (εmk − εnk−q)− iη
−

fmk(1− fnk−q)

ω − (εnk−q − εmk) + iη

]
where fmk is the occupation function and

ρnmk(q,G) = 〈nk|ei(q+G)·r̂|mk− q〉, (3)

represents one of the core quantities computed by the Yambo code. The calculation of
ρnmk(q,G) need to have a large number of wavefunctions in memory and involves FFTs.
Importantly, for each q and ω, χ0 is a dense matrix in the G,G′ indexes (running up to
several thousands), making the kernel very memory intense.

Next, the reducible response function χ is calculated within the random phase ap-
proximation as:

χGG′(q, ω) =
∑
G′′

[
I − χ0(q, ω)v(q)

]−1
G,G′′

χ0
G′′G′(q, ω) (4)

Here v is the Fourier transform of the bare Coulomb potential. The solution of this
equation is equivalent to a dense linear system and can be handled with parallel linear
algebra techniques.

http://www.max-centre.eu 29

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

(iii) Calculation of the electronic self-energy Σnk . It is composed of the exchange
(x) and correlation (c) parts, Σnk(ω) = Σx

nk + Σc
nk(ω). The exchange term is simply the

Fock potential of the Hartree-Fock method and assumes the form:

Σx
nk = −

∑
m

∫
BZ

dq

(2π)3

∑
G

v(q + G) | ρmmk(q,G) |2 fm(k−q) (5)

while the correlation part of the self-energy is given by:

Σc
nk(ω) = i

∑
m

∫
BZ

dq

(2π)3

∑
G,G′

4π

| q + G |2
ρnmk(q,G)ρ?nmk(q,G′)

×
∫
dω′G0

mk−q(ω − ω′)ε−1GG′(q, ω
′) (6)

where ε−1GG′(q, ω) = δGG′ +v(q+G)χGG′ andG0 is the non-interacting Green’s func-
tion [8]. In order to avoid the inversion of large matrices for many frequencies, yambo
adopts the so-called plasmon-pole approximation (PPA) for the GW self-energy. Within
PPA, the ε−1GG′ function is approximated with a single pole function and the frequency
integral in Eq. (6) done analytically. When implemented, the evaluation of the GW-PPA
self-energy is quite CPU intensive.

4.2.2 Defective TiO2 structure: MPI and OpenMP scaling

As a first step, we have considered a defective 2 × 2 × 3 TiO2 bulk supercell with an
interstitial H impurity. The system counts 577 electrons. DFT calculations have been
performed using pw.x and adopting norm-conserving pseudopotentials with a kinetic
energy cutoff (for wavefunctions) of 80 Ry. The electronic structure data generated by
pw.x have been processed by p2y for conversion to the Yambo internal format. QP cor-
rections have been finally calculated with Yambo at the GW-PPA level. Tests have been
performed to verify the efficiency of both MPI and OpenMP parallelisation schemes.
Results are reported below.

MPI scaling. These tests aim at the assessment of the Yambo scaling with respect to
the number of MPI tasks. The number of tasks was defined by changing the number of
KNL nodes from 40 to 320, using 32 tasks-per-node. This corresponds to a number of
MPI tasks that ranges from 1280 to 10240. In all calculations we imposed 2 OpenMP
threads per task, in order to take full advantage of the KNL computational resources. The
results are shown in Fig. 8 and Tab. 16.

As can be seen from the table, the scaling of the main computational kernels (Dipoles,
χ0, Σx, Σc) is quite good, with parallel efficiencies typically larger than 75% at 240 KNL
nodes, with peaks at 90% or more for χ0 and Σc. At the same time, the overall wall-time
does not show the same behaviour. In fact, the total wall-time decreases from 5433 sec
(using 1280 MPI tasks) to 1987 sec (10240 MPI tasks). The most significant decrease
happens for the runs up to 5120 MPI tasks. For larger number of MPI tasks the total
wall-time is almost constant. This happens despite the consistent decrease of the time
taken to perform each of the main kernels of the codes with the number of MPI tasks, up
to 10240, as can be seen in Fig. 8 and Tab. 16.

http://www.max-centre.eu 30

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

1280 2560 3840 5120 6400 7680 8960 10240
#MPI tasks

0

1000

2000

3000

4000

5000

Ti
m

e
(s

ec
)

Dipoles
Xo
X
Self energy
Other

1280 2560 3840 5120 6400 7680 8960 10240
#MPI tasks

0

1000

2000

3000

4000

5000

Ti
m

e
(s

ec
)

Dipoles
Xo
X
Self energy
Other

Figure 8: Defected rutile: Execution times for the tests performed with the yambo code
to verify the efficiency of the MPI parallelisation. Left panel: timing using a pristine
version of the code; Right panel: timing after bottlenecks have been addressed. The time
for each of the main tasks of the code is given separately. The total time taken to perform
other tasks is labeled as "Other". Timing data are explicitly reported in Tab. 16.

For larger number of MPI tasks, the time taken by other tasks than the calculation
of dipoles, χ0 and Σ, represented in red in Fig. 8 and labeled as "Others", dominates
the performance of the code. This is the main bottleneck identified by means of this
use-case. The "Other" time is mainly due to the initialisation step, before any actual
calculation, connected e.g. to the parallel launch of the job as well as the setup of MPI
communicators and IO. In particular, after a deeper investigation, we have identified a
bottleneck related to job launching (20-30 seconds at 200 KNL nodes, 6400 MPI tasks),
perhaps connected to the use of the SLURM scheduler, and a more relevant problem
connected to the creation of folders by Yambo (of the order of 5-6 minutes). We have
re-written the I/O initialisation of Yambo and were able to solve the latter issue. The
updated data are given in the right panel of Fig. 8.

The MPI parallelism can be distributed in different ways, exploring the parallelism
on k or q points, valence or conduction bands (v,c), or g vectors. The distribution is
governed by the parameters X_CPU and X_ROLES="q.k.c.v.g" for the polarisability,
DIP_CPU and DIP_ROLES="k.c.v" for dipoles and SE_CPU and SE_ROLEs="q.qp.b"
for the self energy. The use of different number of tasks leads to changes in the MPI dis-
tribution of the different levels of parallelism. Depending on the system, some choices
may be significantly better in optimising the performance of the code than others. This
leads to small fluctuations in the reported time for each run. A possible improvement
could be achieved by the implementation of an algorithm to determine, for a given total
number of MPI tasks, and a given system (meaning a given number of bands, k and q
points, g vectors), the optimal parallel distribution of MPI tasks for each run-level.

OpenMP scaling. In Yambo, the OpenMP parallelism of χ0 (Dipoles) is governed by
the input variable X_Threads (DIP_Threads). By default these variables are set to
zero and controlled by the OMP_NUM_THREADS environment variable. The OpenMP par-
allelism for the self-energy is governed by the variable SE_Threads. In order to test the
OpenMP implementation of yambo, we have concurrently increased the X_Threads,
DIP_Threads and SE_Threads variables from 1 to 40. Tests have been performed by

http://www.max-centre.eu 31

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Pristine version
#MPI #threads dipoles χ0 χ Σx Σc wall-time
1280 2 1568 1159 53 30 2464 5433
2560 2 997 691 49 15 1232 3268
3840 2 606 385 148 16 848 2369
5120 2 451 361 100 8 619 2029
6400 2 414 301 133 12 606 1979
7680 2 349 221 120 7 427 1846
8960 2 414 196 123 7 381 1928

10240 2 322 165 134 6 344 1987

Fixed version
#MPI #threads dipoles χ0 χ Σx Σc wall-time
1280 2 1499 1199 69 30 2441 5347
2560 2 766 651 109 15 1231 2920
3840 2 532 471 133 12 834 2200
5120 2 412 371 133 8 608 1762
6400 2 344 294 99 7 495 1393
7680 2 294 260 180 7 427 1495
8960 2 256 243 196 7 345 1400

10240 2 231 201 225 6 306 1438

Table 16: Defected rutile: Tests have been performed using 32 MPI tasks per node and 2
threads. Times are given in seconds. In all considered cases, I/O χ and I/O WF operations
require only a few seconds, and therefore are not reported in the table.

fixing the number of MPI task to 480 (60 nodes, 8 MPI tasks per node). The distribution
of the MPI tasks on the different levels of parallelisms has been kept constant during the
test, that is we have always imposed in the input the multilevel MPI structure:

X_CPU="1.1.30.8.2"
X_ROLES="q.k.c.v.g"
DIP_CPU="1.60.8"
DIP_ROLES="k.c.v"
SE_CPU="1.4.120"
SE_ROLEs="q.qp.b"

for the polarisability, dipoles, and self energy, respectively.
The results obtained are reported in Fig. 17 and in Tab. 17, where two horizontal

dashed lines divide the plot in three parts. In particular, the first dashed line separates the
no-hyperthreading regime (number of threads smaller than 8) from the hyperthreading
regime (number of threads greater than 8), while the second dashed line identifies the
transition between a regime where the wall-time decreases with increasing the number
of threads and a regime where the wall-time increases with increasing the number of
threads (note that the KNL technology behind Marconi A2 allows for the use of 4 threads
per core, for a total of 272 virtual cores). By fully exploiting the OpenMP parallelism,
we can reduce the wall-time of about a factor five. In particular, we observe that the
dipoles, χ0, and Σc routines show an excellent OpenMP scalability. At the contrary
we recorded a non-monotonic trend in the time associated with the calculation of the

http://www.max-centre.eu 32

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

1 6 8 12 18 24 30 36 42
#Threads

0

1000

2000

3000

4000

5000

Ti
m

e
(s

ec
)

Dipoles
Xo
X
Self energy
Other

Figure 9: Defected rutile: Execution times for the tests performed with the yambo code
to verify the efficiency of the OpenMP parallelisation. The time for each of the main tasks
of the code is given separately. The total time taken to perform other tasks is labeled as
"Other".

reducible polarisability χ; this behaviour will be carefully analysed in the near future.

4.2.3 Chevron-like polymer: MPI scaling

The computational study of this use case has been mainly focused on the use of large
KNL partitions for a single GW run. While performing the tests, we have set the number
of MPI tasks per node equal to 8 and the number of OpenMP threads equal to 8, while
increasing the number of used KNL nodes (Marconi A2 @ CINECA) from 128 to 768,
for a total of 1024 to 6144 MPI tasks (8192 to 49152 cores). The results of the timing
footprint of the tests are reported in Fig. 10 (top panel). Two main bottlenecks can be
identified from the results of these runs. As for the defected TiO2 structure, the "Other
part", mostly related to the initialisation process, becomes massive (up to 26 minutes
of initialisation for the largest partition). The fixed version of the code significantly
improves on this issue, as visible in the lower panel of Fig. 10.

More importantly, this use case also evidences a second, more tricky, bottleneck, re-
lated to the parallel redistribution of the χmatrix after the solution of the Dyson equation
(cast as a dense linear system) has been computed. This is shown as a green contribu-
tion to the columns in the left panel of Fig. 10. While the problem can be easily worked
around when the χ matrix is not split across G,G′ indexes, the problem is less trivial
when such distribution is switched on. In passing by we also remark that this issue is
tightly related to the implementation and usage of parallel IO via HDF5 (already present
in yambo). The definition and validation of a general purpose solution is ongoing and
requires more investigation.

4.2.4 Intra-node profiling on Yambo: GPUs

Recently, an extensive activity to port Yambo on GPUs has been put in place. This has
addressed the kernels computing dipoles, Hartree-Fock, linear response, GW and Bethe
Salpeter equation (BSE). Technically, the porting has been achieved by taking advantage

http://www.max-centre.eu 33

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

#MPI #threads/ #threads/ dipoles χ0 χ Σx Σc wall time
MPI node

480 1 8 1974 1493 92 12 1191 4869
480 6 48 1019 1062 184 5 542 2913
488 8 64 935 849 271 5 407 2576
480 12 96 665 576 209 6 273 1832
480 18 144 532 407 187 7 186 1422
480 24 192 400 356 134 5 141 1140
480 30 240 370 353 70 4 144 1039
480 36 288 419 586 77 4 197 1384
480 42 366 491 968 66 9 182 1819

Table 17: Defected rutile: Tests have been performed using 60 nodes and 8 MPI tasks
per node. Times are given in seconds. For all the considered cases, I/O χ and I/O WF
operations require only few second, and therefore are not reported in the table.

of CUDA Fortran and exploiting both cuf-kernels and CUDA libraries (cublas, cufft, and
cusolver). Currently Yambo counts about 62 CUDA Fortran cuf kernels. Benchmarks
have been performed on PizDaint@CSCS (nodes equipped with NVIDIA Tesla P100
GPUs) and Galileo@CINECA (nodes with NVIDIA Tesla V100 GPUs). The system
considered is a poly-acetylene chain, i.e. an organic polymer with the repeating unit
(C2H2)n. Simulations have been performed by adopting a version of Yambo compiled
using the PGI compiler for both the CPU and GPU cases. A snapshot of the profiling tool
applied to the GPU-ported version of Yambo is shown in Fig. 11.

Results obtained on Piz Daint (XC50 partition) are reported in Fig. 12. Here, we
compared the execution time for the irreducible polarisability χ0, the Hartree-Fock, and
the self-energy routines for calculations performed on both CPUs and GPUs (from 2
to 8 nodes). The obtained results point out a 5 to 10× speedup in time to solution for
the ported kernels. Noticeably, the use of CUDA Fortran for GPU porting has a rather
small impact on the code because the accelerated parts are well-localised in only few
subroutines. Remarkably, the profiling performed to optimise the performance on GPUs
allowed us to obtain also some optimization when running on CPUs, as for instance the
one concerning the routine FFT_setup, where a few minutes, non-scaling, time has
been reduced to a few seconds.

Data concerning the intra-node profiling of Yambo on Galileo2 are reported in Tab. 18.
Here results are divided in two sets concerning GW (upper part of the table) and BSE
(lower part) simulations. Also in this case the results evidence a significant speedup on
the time-to-solution, for both GW and BSE.

Typically, for GPU-accelerated systems the recommended usage model for our soft-
ware is to use one MPI task per card, setting the number of OpenMP threads to the max-
imum available on the host in order to best exploit also its computational capabilities.
Since currently available GPUs (say NVIDIA Volta) have a quite large computational
power per card, with a few MPI tasks one is already able to address and exploit a very

2 Note that Galileo, on a single node, mounts 2 NVIDIA V100 GPUs cards (testing purposes). Results
of Tab. 18 compare the performance obtained on the full node (2*8-core Intel(R) Xeon(R) CPU E5-2630 v3
@ 2.40GHz (Haswell)) with the data obtained also exploiting the two above-mentioned V100 cards.

http://www.max-centre.eu 34

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

1024 2048 4096 6144
#MPI tasks

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m

e
(s

ec
)

Dipoles
Xo
X
Sigma
Other

1024 2048 4096 6144
#MPI tasks

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m

e
(s

ec
)

Dipoles
Xo
X
Self energy
Other

Figure 10: Chevron polymer: Execution times for the tests performed with the yambo
code to verify the efficiency of the MPI parallelisation. Left panel: timing using a pris-
tine version of the code; Right panel: timing after some of the bottlenecks have been
addressed. The time for each of the main tasks of the code is given separately. The total
time taken to perform other tasks is labeled as "Other". Note that the data corresponding
to 1024 MPI tasks are the same in the two cases since we do not expect major changes
introduced by the fix.

GW
FFTsetup XoTOT XTOT HF Σ Wall-Time

CPU 69.00 389.00 3.00 52.00 222.00 765.00
GPU 0.21 19.44 2.50 0.63 5.47 38.00

BSE
FFTsetup XoTOT XTOT BSEkernel BSEdiago Wall-Time

CPU 2.24 376.30 2.73 67.75 1.22 477
GPU 0.25 17.22 2.37 11.69 0.74 39

Table 18: Full node vs two NVIDIA V100 GPUs on Galileo. Times are given in seconds.
In the upper part we report the times for the FFT setup, the irreducible and reducible po-
larisability, the Hartree-Fock, the self-energy and the wall-time for both CPU and GPUs.
Similarly, the FFT setup, the irreducible and reducible polarisability, the kernel BSE, the
BSE diagonalisation and the wall time are considered for BSE calculations.

http://www.max-centre.eu 35

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 11: Profiling of the GPU porting of Yambo performed on Piz Daint (XC50
partition) using NVIDIA tools. Currently the code counts about 62 cuf (CUDA Fortran)
kernels, no custom kernels, plus the use of cufft, cublas, and cusolver libraries.

2 4 8 16
#nodes

0

500

1000

1500

2000

2500

3000

Ti
m

e
(s

ec
) -

 C
PU

Xo_TOT
HF
Sigma_TOT
Other

2 4 8 16
#nodes

0

50

100

150

200

250

300

350

Ti
m

e
(s

ec
) -

 G
PU

Xo_TOT
HF
Sigma_TOT
Other

Figure 12: Full socket (left panel) vs GPU (right panel) timing for poly-acetylene on
Piz Daint (XC50 partition). The time for each of the main tasks of the code is given
separately. The total time taken to perform other tasks is labeled as "Other".

http://www.max-centre.eu 36

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

large computational partition. Given the very effective scalability of Yambo at both the
MPI and OpenMP level (especially in the limit of small-medium number of tasks), the
main issue threatening the use of Yambo on GPU-accelerated machines is the memory
footprint. Current GPUs typically have 16 to 32 GB RAM per card, while Yambo can be
very memory hungry (especially if the memory is distributed only over a few MPI tasks).

In this respect, testing the GPU porting of the code against larger systems would
be very important (and is a currently ongoing activity). So far, besides poly-acetylene,
we have also tested a larger system from the Yambo benchmark suite, namely the N7
graphene nanoribbon of Ref. [9]. Already on a single node with two NVIDIA TITAN V
cards, results are very positive, meaning that the calculations went through and the per-
formance is very good. Moreover, these preliminary tests have highlighted a bottleneck
connected to a computational kernel not ported on GPUs (the calculation of the cut-off
Coulomb potential in reciprocal space). A porting of this kernel will be addressed as
soon as possible.

http://www.max-centre.eu 37

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

4.3 FLEUR

The performance of the DFT Code FLEUR [10] was substantially optimized during the
first phase (2015-2018) of the MAX project. MPI parallelisation of the code was ex-
tended, shared memory parallelism was added, memory access was re-optimized, inter-
faces to optimized libraries were implemented. Those improvements not only drastically
changed time-to-solution (up to 4 times) but also provided possibility to simulate much
larger unit cells with over 1000 atoms [11]. Thus, the last FLEUR version of the first
phase of the MAX project (MAX Release 3) will be the base for the performance opti-
mization process during the phase two.

4.3.1 Performance of the FLEUR MAX Release 3

FLEUR is a full-potential all-electron DFT code, an implementation of the full-potential
linearized augmented plane wave method (FLAPW). A usual run of the code consist of
many self-consistency iteration cycles; the main parts of one cycle are: i) generation of
potential, ii) setup of the Hamiltonian and overlap matrices, iii) solving the generalized
eigenvalue problem, i.e. diagonalisation, iv) calculation of the new charge density. When
several (or many) k-points need to be calculated, several (or many) independent matrices
need to be set up and diagonalised. Number of k-points needed is usually inversely
proportional to the size of a unit cell, e.g. for a cubic unit cells with about 1000 atoms
one k-point can be sufficient.

MPI parallelisation of the FLEUR code consists of two layers: the first one for the
k-points and the second one for the distributed set up and diagonalisation of the matri-
ces. Since eigenvalue problems for different k-points are independent and show nearly
ideal scaling, only one k-point is calculated in the test cases chosen for profiling. All
self-consistency iterations are computationally identical, that is why for the performance
tuning purposes we only run one iteration step.

The most time-consuming parts of the code are matrix setup, diagonalisation, and
new charge generation, as one can see from the scaling plot of a test case TiO2 with 1078
atoms (Fig. 13). These three parts scale cubically with the system size. The generation of
potential, which scales quadratically, stops playing a substantial part for unit cells of this
size. Setup of the matrices ("HS setup", green) and solving the generalized eigenvalue
problem ("Diagonalisation", blue) together are responsible for more that 95% of the com-
puting time. These measurements were done on the CLAIX 2016 (Intel Broadwell, see
Tab. 19) supercomputer at RWTH Aachen University, the plot starts with 16 nodes due
to the memory requirements.

CPU # cores/ performance/ memory/ memory
node core, GFlops node, GB bandwidth, GB/s

CLAIX Intel Broadwell 24 35 128 120
2016 E5-2650v4
CLAIX Intel Skylake 48 67 192 180
2018 Platinum 8160

Table 19: Hardware systems used to perform the benchmark calculations with FLEUR.

It is apparent form the scaling diagram that the overall scalability of the code is

http://www.max-centre.eu 38

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Matrix setup Diagonalisation New charge Total
CPI 0.58 0.38 0.61 0.48
Performance, GFlops 7.7 20.6 5.8 12.1

Table 20: Performance counter measurements done by LIKWID, average values per core.
Code: FLEUR, hardware: CLAIX 2016, one node (24 cores). Test case: CuAg 256
atoms.

impeded mostly by the matrix setup part. The new charge generation part, though only
takes less than 5% of the execution time, still can influence the total performance. To
better understand factors affecting the performance, those two parts were investigated
in more details (the diagonalisation part is outsourced to external libraries, in this case
ELPA, and shows a good scaling behaviour). Using a smaller test case (CuAg, 256 atoms)
with the similar scaling behaviour, performance counters were measured and traces were
collected during the parallel execution of the code.

Performance counters for the matrix setup and new charge generation regions as well
as for the diagonalisation part and total run were measured while running the code on one
node with 4 MPI processes, 6 OpenMP threads per MPI process (Tab. 20). The values for
CPI (cycles per instruction) and performance (number of double precision floating point
operations per second) show that the code is quite performing, but still have a room for
the improvement, especially in the new charge part.

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250S
pe

ed
up

, e
xe

cu
tio

n
tim

e
on

 1
6

no
de

 8
7

m
in

ut
es

Number of nodes, 24 cores each

TiO2 (1078 atoms)

Total
HS setup, 56.5%

Diagonalization, 38.9%
New charge generation, 3.9%

Ideal

Figure 13: Strong scaling of the test case TiO2 (1078 atoms, 1 k-point, 1 self-consistency
iteration step). The plot starts with 16 nodes, the percentage on the legend refers to this
run. The total scaling (red) is compared with the scaling of the main parts (green, blue,
magenta) and with the ideal scaling (light blue). Measurements were done on the CLAIX
2016 supercomputer at RWTH Aachen University (Tab. 19).

http://www.max-centre.eu 39

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 14: Trace of the parallel execution of the FLEUR code, matrix setup region. Only
12 of 32 MPI processes are shown, one the first MPI process is shown with its worker
OpenMP threads.

Figure 15: Trace of the parallel execution of the FLEUR code, new charge density
region. Only 8 of 32 MPI processes are shown, one the first MPI process is shown with
its worker OpenMP threads.

Traces for the Matrix setup and new charge generation regions are shown on Figs. 14
and 15 respectively. This was a parallel run on 8 nodes, 4 MPI processes per node, 6
OpenMP processes per MPI process. To save the place, only several MPI processes are
shown, and only the first together with its worker OpenMP threads. We can see a decent
load balance for the matrix setup part and a significant serial part in the new charge region,
which can explain differences in CPI and performance values for these code parts.

4.3.2 New data layout

The compact way of storing the matrix, so-called packed storage was applyed in FLEUR
in the MAX Release 3 and all preveous versions. At the time of implementation (i.e.
several decades ago), when memory resources was scarce, it was a very reasonable opti-
mization. Since the matrices are hermitian, only half of it was calculated and stored via
one-dimentional array.

This strategy is not the best nowadays. In modern HPC systems, not the amount but
the access to the memory introduces the main bottleneck. The most performant algo-

http://www.max-centre.eu 40

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

nodes 16 32 64 128 256
MaX R3 (Packed storage), s 2966.62 1759.26 1141.23 839.98 680.23
Develop (Full matrix), s 1458.07 815.11 494.78 340.09 266.99
Speedup 2.03 2.16 2.30 2.47 2.55

Table 21: Execution time of the matrix setup. Two version are compared: packed storage
(from the MAX release 3) vs. full matrix storage (the develop brunch, not released yet).
Test case: TiO2 1078 atoms. Hardware: CLAIX2016

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 150 200 250

S
pe

ed
up

Number of nodes, 24 cores each

TiO2 (1078 atoms), Matrix setup

Release 3, packed storage
Develop, full matrix

Ideal

Figure 16: Strong scaling of the matrix setup part. Two version are compared: packed
storage (from the MAX release 3) vs. two-dimentioanl storage (the develop brunch, not
released yet). Test case: TiO2 1078 atoms. Hardware: CLAIX2016

rithms are now those which are able to use and reuse the data as many times as possible,
reducing the streaming of the data from the main memory to the CPUs. Hence, storing
data explicitly as matrices and allowing therefore the utilization of the standard optimized
routins (such as BLAS2 and BLAS3) should provide better performance.

Restructuring the data layout in this way indeed improved performance considerably
(Tab. 21): execution time became more than two times shorter. Also the scalability of this
part of the code became more efficient (Fig. 16). The difference in the performance of the
whole run can be seen on the Fig. 17, where the execution time of the one self-consistency
iteration of the test case TiO2 (1078 atoms) is plotted. With this optimized version of the
FLEUR the simulations of a larger variant of this test case (2156 atoms) became possible,
which is also shown on this plot. Unfortunately, only three configurations were possible
on this machine: it starts with 128 nodes because of the memory requirements and 512
nodes are nearly the whole machine.

After the second stage of the CLAIX machine, CLAIX 2018 (Tab. 19) became avail-
able, we repeated the calculations with these two test cases (Fig. 18) together with a new
one: SrTiO3 with dislocations (STO).

http://www.max-centre.eu 41

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

 8

 16

 32

 64

 128

 16 32 64 128 256 512

E
xe

cu
tio

n
tim

e,
 m

in

Number of nodes, 24 cores each

TiO2

2156 atoms devel
1078 atoms MaX R3

1078 atoms devel

Figure 17: Scaling behaviour of the test case TiO2 (1 k-point, 1 self-consistency itera-
tion). For the smaller setup (1078 atoms), the performance improvement of the current
development version compared to the MAX Release 3 is shown (green and magenta).
The simulation of a bigger test case (2156 atoms) became possible. Hardware: CLAIX
2016.

 8

 16

 32

 64

 128

 256

 512

 16 32 64 128 256 512

W
al

l-c
lo

ck
 ti

m
e,

 m
in

Number of nodes, 48 cores each

Scaling, big unit cells

TiO2 1078
TiO2 2156

STO
Ideal slope

Figure 18: Scaling behaviour of big test cases: TiO2 (1078 atoms, 2156 atoms) and STO
(3750 atoms). Hardware: CLAIX 2018.

http://www.max-centre.eu 42

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

4.4 BigDFT

4.4.1 Uranium-dioxyde benchmarks - GPU

Thanks to a highly efficient GPU implementation of a novel wavelet based algorithm
for the evaluation of the exact exchange, we succeeded in reducing the cost of hybrid
functional calculations in systematic basis sets by nearly one order of magnitude. As a
consequence, hybrid functional calculations with our method are only about three times
more expensive than a GGA functional calculation. This is a price that most scientists
should be ready to pay for the significantly improved accuracy offered by such function-
als. We expect that this development will pave the way for a very widespread use of
hybrid functionals in combination with systematic basis sets. This in turn will greatly in-
crease the predictive power of density-functional calculations and make them even more
popular. Moreover, from a HPC viewpoint, the usage of such methods will enable exten-
sive usage of Petaflop machines for electronic structure calculations communities, on the
brink of the exascale era.

The calculation of the exact exchange energy EX requires a double summation over
all the N occupied orbitals

EX [F̂] = −1

2

∑
i,j,σ

fi,σfj,σ

∫
dr dr′

ρσij(r) ρσji(r
′)

|r− r′|
, (7)

where we have defined ρσij(r) = ψ∗j,σ(r) ψi,σ(r). The diagonal (i = j) contribution to
EX exactly cancels out the Hartree electrostatic energy EH [ρ]. We explicitly specify the
(collinear) spin degrees of freedom with the index σ =↑, ↓, together with the occupation
number fi,σ. The action of the Fock operator D̂X to be added to the KS Hamiltonian
directly stems from the EX definition:

D̂X |ψi,σ〉 = −
∑
j

fj,σ |V̂ σ
ijψj,σ〉 , (8)

where we have defined the set of operators V̂ σ
ij with integral kernels

〈r| V̂ σ
ij |r′〉 =

∫
dr′′

ρσji(r
′′)

|r− r′′|
δ(r− r′) , (9)

that is the solution of the Poisson’s equation ∇2V σ
ij = −4πρσij . In a KS-DFT code

which searches for the ground state orbitals, one has to repeatedly evaluate, during the
SCF procedure, for a given set of ψi,σ(r), the value of EX as well as the action of the
corresponding Fock operator D̂X on the entire set of occupied orbitals.

To give an idea of the computational workload of our calculations we have written
in Tab. 22 the number of evaluations of the Poisson solver that the calculation of EX
and D̂X (for a single wavefunction iteration) requires for the systems considered in these
benchmarks.

The system we used to test our GPU accelerated runs is the Piz-Daint supercomputer
in the Swiss national supercomputing center (CSCS), Lugano. Each run was performed
using 1 MPI process per node, and 8 OpenMP threads per MPI process.

During the exact-exchange computation, with communication properly overlapped,
each of the GPUs spends 80% of the time computing, and reaches 40 GFlop/s of sustained

http://www.max-centre.eu 43

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Na 12 96 324 768 1029
ψσi 164 1432 5400 12800 17150
ρσij 6 658 513 372 7 292 700 81 926 400 73 539 200

Table 22: Number of Poisson solver evaluations per self-consistent iteration required to
calculate the exact exchange energy and operator on the different systems used in the
study. The number of atoms Na as well as the number of KS orbitals ψi is indicated.

double precision performance. Memory throughput on the GPU is on average more than
165 GBps, over 65% of the peak theoretical bandwidth of the GPU, which is the limiting
factor here. The CPU performance for the same run without acceleration on PIZ DAINT

is 6.4 GFlops per CPU (using 8 OpenMP processes per CPU).

Figure 19: Timings (s) for PBE and PBE0 with and without GPU acceleration per it-
eration for different cells of UO2 as a function of computing nodes on Piz-Daint. Right
panels represent the ratio for a SCF iteration between a PBE0 and a PBE calculation.

As shown in Fig. 20 the GPU accelerated version scales well up to 3 orbitals/node.
When going to two or even one orbital per node the degradation of the scalability is due
to the fact that computation time is not high enough to overlap the communications. For
one of the large systems used in this study (768 atoms, i.e. 12800 orbitals), the 3200
node run (4 orbitals/node) was 75% quicker than the 1600 nodes run. Even larger sizes
(1029 atoms, resulting in 17150 orbitals, on up to 4288 nodes) were reached during this
study, although network issues arose and prevented a good scalability. These limits, al-
though only reached on sizes that are currently considered as uncommon for scientific
production work, could be overcome by adding a wavelet based compression/uncom-
pression step before each communication. This transformation is already implemented
on the GPU in BIGDFT, and currently used only before entering the exact exchange step.
On some systems this could reduce communication sizes by a factor of four. The new
version of GPU-accelerated supercomputers like PIZ-DAINT or JEAN ZAY at IDRIS in
France, provide a huge bump in computing power on the GPU, while the network was

http://www.max-centre.eu 44

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 20: Strong parallel scaling of the exact exchange implementation in BigDFT for
different systems (from a very small, 12 atom cell, up to a 1,029 atom cell). The ideal
curve is depicted in blue, CPU, GPU and GPU-GPUDirect are included for small cells.

only slightly improved. This means that this optimization is even more important.
Another example of submission of the same systems in CINECA’s Marconi KNL

computer can be found in the notebook as the URL [12], where the AiiDA plugin is
used to run the computations.

4.4.2 Bench Submission through AiiDA

We have developed the AiiDA [13] plugin for BigDFT code and we have inserted it in
the development version of the library PyBigDFT, under stabilisation in the context of
WP3. The plugin allows to integrate AiiDA effortlessly in preexisting BigDFT note-
books, enabling asynchronous deported execution on supercomputers as well as database
tracking of results. To validate its technological readiness and usefulness we have ran
some of the performance benchmarks with such a plugin. As an illustration we show a
code snippet associated to the submission of the UO2 bench on Marconi.
from BigDFT import Datasets as D, Calculators as C
#instantiate the dataset of the runs to be performed
benchData=D.Dataset(label='bench',input=inp,posinp=posinpfile, queue_name='

knl_usr_prod', account='Max_devel_0', async=True)
#append jobs following MPI and OMP
for nodes in list_of_nodes:

for mpi in list_of_mpi_per_node:
for omp in list_of_threads_per_process:

code=C.AiidaCalculator(code="bigdft@marconi",num_machines=nodes,
mpiprocs_per_machine=mpi,omp=omp, walltime=...)

id={'name':jobname, 'nodes':nodes,'mpi':mpi,'omp':omp}

http://www.max-centre.eu 45

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Global Other

25

0

10

15

30

35

5

1,7

0
1

0

1

2

3

5

6

7

1

1,25

Figure 21: Scaling of a 3 iterations PBE run with UO2_3 input (5400 orbitals) on
Marconi system, with 43-169 nodes, 8 MPI processes/node, 8 OMP threads/process -
Global View on the left, Subsection Other on the right.

Global Other Convolutions

30

20

30

10

0

2

1

0
1

2

1

2

3

4 24

1

2

12

4

6

4

8

10

Figure 22: Scaling of a 3 iterations PBE run with UO2_3 input (5400 orbitals) on
Marconi system, with pre-application of pseudopotentials with 43-169 nodes, 8 MPI
processes/node, 8 OMP threads/process - Global View, Subsection Other, Subsection
Convolutions.

benchData.append_run(id=id,runner=code)
#submit and run the jobs remotely
benchData.run()

After completion, execution and performance data can be analyzed with PyBigDFT
analysis tools, providing highly useful input on BigDFT’s behavior. Time spent inside
each section and subsection, imbalance at each level, and time spent inside routines can
be inspected directly from the notebook used for submission.

4.4.3 Uranium-dioxyde benchmarks - KNL

http://www.max-centre.eu 46

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Global PS Computation

1000

4

0
1

0

1000

1

4

2000

4000

5000

6000

3

2 2000

4000

5000

2

1

3

Figure 23: Scaling of a 3 iterations PBE0 run with UO2_3 input (5400 orbitals) on
Marconi system, with 43-169 nodes, 8 MPI processes/node, 8 OMP threads/process -
Global View, Subsection Poisson Solver.

UO2_3 PBE (Fig. 21) : Identifying bottlenecks in this run is simple, as every part
of BigDFT is traced separately and each portion of the code can be isolated. Here, the
"Other" section seems to not offer good scaling. Zooming on this section indeed reveals
that the subsection "ApplyProj", corresponding to the application of the nonlocal pseu-
dopotential, does not scale well on this particular run. This is due to a default choice
in BigDFT to recompute pseudopotential application each time, without storing the re-
sulting value in memory, to save memory, as this part is usually very small compared to
convolutions. As this computation is local, it does not scale. An option in input file can
be used to calculate the pseudopotentials once and for all and store the results, at the cost
of memory occupancy (3GB of overhead per MPI process in this case, 24GB per node).
As memory was not an issue in this case, we were able to run the experiments again and
were able to get rid of this bottleneck. Fig. 22 shows the new runs, showing a maximum
performance improvement of 30% in the computation phase. The convolutions section
is now again the most costly, and the "Rho_comput" can now be seen as the more prob-
lematic section. This part handles the computation of the charge density. Convolutions
are usually the most costly part of PBE execution, and the convolutions involved in these
computation will be integrated in the general convolution library libconv, using autotun-
ing strategies to select the most optimized version of each convolution kernel according
to its parameters and the underlying platform. This work is currently part of WP2.

UO2_3 PBE0 (Fig. 23): Computation of the exact exchange part is the most ex-
pensive part in these experiments, as expected. Scaling of this section is near-perfect,
thus improving computational throughput of the Poisson Solver is critical. Using GPUs
yields much better performance than CPUs and even KNL processors, as seen on the
experiments reported previously.

These benchmarks were reproduced on other larger datasets, with up to 800 KNL
nodes on the Marconi system at Cineca, confirming the results previously obtained and
the overall behavior of the application. Once the AiiDA plugin released, BigDFT will
be able to provide simple and reproducible notebooks to perform benchmarking tasks
and analysis on any platform it is installed on. This will allow performance comparison,
bottleneck inspection and optimization on any new platform with very little effort.

http://www.max-centre.eu 47

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

4.5 CP2K

CP2K is a program to perform simulations of solid state, liquid, molecular and biological
systems. It has a rich set of functionalities which allows to run different kinds of DFT and
post-DFT simulations. CP2K relies on the performance of external parallel linear algebra
libraries, such as ScaLAPACK and DBCSR (a library to perform sparse matrix-matrix
multiplications). The aim of this work is to isolate and benchmark performance-critical
parts of the CP2K code relevant for the scientific cases (Tab. 10, 11). For the scientific
case (Tab. 12) the task is to create a base line plane-wave simulation with the SIRIUS
back end (already fully GPU accelerated) and track the performance improvements for
the duration of the project.

4.5.1 RPA calculations with CP2K

Evaluation of independent particle response function χKS(r, r′, ω) for each frequency
point ω is the most expensive part of RPA calculations, accounting for up to 90% of the
run time. Algorithmically this is expressed as a sequence of matrix-matrix multiplica-
tions, where the matrices represent the projections of the Kohn-Sham electron-hole pairs
ψ†c(r)ψb(r) onto the auxiliary basis functions which are used to expand χKS(r, r′, ω)
in spatial domain. The projection matrices are rectangular with a large imbalance be-
tween the number of rows (corresponding to the number of electron-hole pairs) and
number of columns (corresponding to the number of auxiliary basis functions). For the
RPA test of 128 water molecules this number are 17408 auxiliary basis functions and
3473408 electron-hole pairs. In CP2K the parallel matrix-matrix multiplication is done
with ScaLAPACK which has a highly volatile performance depending on the internal pa-
rameters such as block sizes of a 2D block-cyclic distribution or BLACS grid dimensions.
A much more stable performance can be obtained with the communication avoiding al-
gorithm for matrix multiplications implemented in the COSMA library [14]. The work
in in progress to implement PDGEMM wrapper for COSMA and interface it with the
CP2K code. In the Tab. 4.5.1 we show the preliminary results for the matrix-matrix mul-
tiplication benchmark with the dimensions corresponding to the 128 water molecules test
case.

http://www.max-centre.eu 48

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Water molecules: 64
Matrix sizes (m,n,k): 8704, 8704, 868352

ScaLAPACK (CPU) COSMA (CPU) COSMA (GPU)
Block sizes: 3392x2176
MPI grid: 128x2

1.92s 1.95s 1.65s

Block sizes: 32x32
MPI grid: 128x2

4.16s 2.2s 1.95s

Block sizes: 32x32
MPI grid: 16x16

13.83s 2.1s 1.8s

Water molecules: 128
Matrix sizes (m,n,k): 17408, 17408, 3473408

ScaLAPACK (CPU) COSMA (CPU) COSMA (GPU)
Block sizes: 13568x4352
MPI grid: 128x2

21.5s 22.95s 15.1s

Block sizes: 32x32
MPI grid: 128x2

31.73s 26.75s 17.84s

Block sizes: 32x32
MPI grid: 16x16

116.72s 25.70s 17.55s

Table 23: Benchmark of the parallel matrix-matrix multiplication which accounts for
the ∼90% of the RPA execution time. The cases of 64 and 128 water molecules are
considered. The CPU runs were performed on multicore nodes of Piz Daint containing
36 CPU cores (2x 18-core Intel Browadwell). GPU runs were performed on the hybrid
nodes of Piz Daint containing 12-core Intel Haswell + NVIDIA P100 card. COSMA
library is much less sensitive to the MPI grid dimensions and block sizes; this is because
COSMA is working with its own matrix storage layout to which the input matrices are
converted.

4.5.2 Linear scaling calculations

In the linear scaling regime the costly diagonalisation of the Hamiltonian is avoided and
replaced by the evaluation of the density matrix using the expansion of the Fermi oper-
ator. This leads to a sequence of sparse matrix-matrix multiplications which become a
bottle neck in this type of calculations. In CP2K the sparse matrix multiplications are
done using the DBCSR library [15] (formerly a part of CP2K code base, now a stan-
dalone reusable library). To get the optimal performance DBCSR is using auto-tuning,
i.e. for a given CP2K Gaussian basis set it optimizes several parameters of matrix-matrix
GPU multiplication kernels for all possible m,n, k triplets arising from this particular
basis. Although the auto-tuning will give the best performance for the selected Gaussian
basis, it has a significant drawback: for the unknown m,n, k triplets for which no auto-
tuning was performed (i.e. when a user picked a new basis set) the GPU back end was not
generated and the CPU back end will be called instead. This will result in a significant
drop of performance if the user picked a basis for which DBCSR was not auto-tuned.
This is also a problem for HPC centers who maintain the CP2K installation: there is no
way to know for which basis they need to auto-tune and compile CP2K+DBCSR.

To solve this problem we have been working on the automatic determination of the
optimal GPU matrix-matrix multiplication kernel parameters for the arbitrary m,n, k

http://www.max-centre.eu 49

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 24: Using the machine learning in combination with JIT allows to add new GPU
kernels with optimized parameter sets to the library without an additional cost of auto-
tuning. This graph shows the comparison of the performance of the new GPU kernels
added to the library thanks to JIT-ing with the performance of the fallback CPU kernels
that would be used without these developments. Speedups easily exceed 10x for larger
block sizes.

triplets using the machine learning technique. The model of the GPU kernel parameters
is initially fit on a training dataset and then is used to generate GPU kernels for any
m,n, k triplets with infered parameters. These kernels are then compiled on the fly at the
first invocation of the library using CUDA’s Just-in-Time (JIT) compilation capabilities.
The preliminary results are shown on the Fig. 24.

The new version of the DBCSR library with JIT capabilities was tested on the linear
scaling DFT run for ≈ 7000 water molecules on 256 nodes of Piz Daint, using an accu-
rate, molecularly optimized TZVP basis. The full application performance was improved
from 1150 sec. to 540 sec. in time-to-solution metric (>2x speedup).

4.5.3 Plane-wave pseudo potential calculations

As part of the ongoing project activities CP2K code was interfaced with the SIRIUS
library [16] which implements plane wave pseudopotential and augmented plane wave
full-potential methods of the DFT. The primary objective of this development is to pro-
vide an easy validation and verification mechanism for the Gaussian basis set of CP2K

http://www.max-centre.eu 50

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 25: Distribution of time in the CP2K+SIRIUS plane-wave pseudopotential ground
state calculation of C60 molecule in the box. Top: diagonalization of the Hamiltonian and
generation of density and potential are the main time consumers. Bottom: application of
the Kohn-Sham Hamiltonian is the most expensive part of the iterative diagonalization
process. FFT transformation of the wave-functions which are done during application
of the Hamiltonian and charge density summation are the bottle neck for this type of
calculations.

by enabling the reference plane-wave ground state calculation inside CP2K using the
same input file and the same pseudopotential. As a benchmark we picked a single C60

molecule in a large box and run a DFT ground state on 4–16 nodes to establish the base-
line performance values. The results are collected in Tab. 4.5.3

SIRIUS library measures the execution time of its individual components and pro-
vides a comprehensive timing report at the end of the run. This allows for a quick and
lightweight analysis of the library performance, as, for example, shown in Fig. 25.

http://www.max-centre.eu 51

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Number of nodes Time to solution²
4 548.7s
9 305.4s
16 213.1s

Table 24: Time to solution for the plane wave pseudopotential DFT ground state of C60

molecule done with CP2K+SIRIUS. The runs were performed on the hybrid nodes of Piz
Daint containing 12-core Intel Haswell + NVIDIA P100 card.

http://www.max-centre.eu 52

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

4.6 SIESTA

During the reporting period we have profiled the performance of SIESTA. We have used
the powerful performance analysis tools developed at BSC 3 that afford a very detailed
understanding of the code’s behavior while affecting its execution only minimally 4. The
profiling work was done on MareNostrum IV5 at the Barcelona Supercomputing Center.
Each node of this machine contains 48 Intel Platinum 8160 @ 2.1 GHz CPU cores.

In Fig. 26 we show the timings and parallel efficiency (with the efficiency of 96
cores defined as 1.0) for a specific large use case, namely a short DNA strand containing
about 11,000 atoms. We performed two geometry iterations, each with five iterations of
the main SCF loop. As can be seen, the overall scaling is not good, with an efficiency
of only 30% for 2300 cores. The main culprits for the performance degradation, taking
into account CPU usage, are the initialisation stages (state_init and Setup_H0), with an
efficiency of 7% and 3%, respectively, which take more than half of the overall CPU time
when running on 2300 cores. The routine state_init is called before processing each new
geometry, and Setup_H0 is called at the beginning of each scf loop. Even though these
routines are only called once 6 , their scaling is bad enough to considerably affect the
overall performance, and are thus bottlenecks that should be addressed.

We turned first to the routine nlefsm, part of Setup_H0. This routine computes the
matrix elements of the non-local part of the pseudopotential, involving products of over-
laps between Kleinman-Bylander (KB) projectors and orbitals. Orbitals are fully dis-
tributed in SIESTA, but KB projectors are handled implicitly by all processes via their
positions, and in fact some of the same overlaps are computed several times by different
processes. This is unavoidable and leads to reduced scaling. In addition, this routine,
in its first call, was computing the interpolation tables for the overlaps as they were re-
quested (further calls just use the tables). Hence, a reduced scaling was coupled with
heavy CPU use in the initialization call, leading to a severe bottleneck.

Rather than just marking it as such and include it in the list of actions to be taken
later on, we felt that it would be important to fix it immediately, since its presence could
mask other possible bottlenecks, and would also unnecessarily inflate the CPU time of
further tests. The solution was actually quite straightforward: to pre-compute the needed
interpolation tables in a more favorable setting (in fact, in a fully distributed way: routine
initMatel). Then the initial call to nlefsm just uses the tables and takes very little CPU
time.

For the same reasons of clarity and economy, we also fixed the bottleneck in the
dhscf_init routine, which sets up the data structures in the real-space grid used for com-
puting the charge density and the matrix elements of the effective potential. Here the
problem was that the pre-scheduling of the needed communications, implemented some
years ago using graph-coloring techniques, became very costly for large numbers of pro-
cessors. Asynchronous communications have been used instead. Finally, a number of

3https://www.bsc.es/discover-bsc/organisation/scientific-structure/
performance-tools

4It often happens that a detailed profiling of a code leads to a considerable slow down, which might affect
the code execution itself and thus bias the profiling. With the BSC tools this is not the case.

5https://www.bsc.es/marenostrum/marenostrum
6This is true for one single SCF calculation. In the case of a geometry optimization or Molecular Dy-

namics, the initialisation routines are called more than once.

http://www.max-centre.eu 53

https://www.bsc.es/discover-bsc/organisation/scientific-structure/performance-tools
https://www.bsc.es/discover-bsc/organisation/scientific-structure/performance-tools
https://www.bsc.es/marenostrum/marenostrum
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 26: Timings and parallel efficiency of the reference version of the code, showing
in red sections of reduced scalability.

http://www.max-centre.eu 54

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

smaller changes, mostly involving distribution of work that previously was done serially
in naefs, dnaefs, and kinefsm, complete the preliminary work done up to now.

Fig. 27 shows the new timings and parallel efficiency. While several red sections
of reduced scalability are still shown, their associated CPU times are now quite small.
Overall, the optimisation achieved in this preliminary stage of the analysis has reduced
considerably the initialization effort in the program, something which is intrinsically use-
ful but also very relevant for the operation of SIESTA as a “callable quantum engine”,
as foreseen in the WP1 work-package in MAX. A graphical representation of this can
be seen in the trace in Fig.28 : the top panel shows the original trace, with an oversized
initialization section followed by two groups of five SCF steps. In the bottom panel the
initialization section has been reduced almost to zero on the scale of the whole calcula-
tion. In Fig.29 we show a zoom of the initialization part, where the big improvements
are even more noticeable. As can be seen, some routines have virtually vanished in the
optimised version of the code.

Some more tweaks to a few routines are still possible, but they are deferred to the next
stage. What the preliminary analysis and early fixes have uncovered is that the overall
scalability of the program in this profiling run is mostly limited by the solver stage, which
takes almost 90% of the CPU time but shows an efficiency of a bit less than 50% when
running with 2100 cores. This is actually not a bad relative result: matrix diagonalisa-
tion, as implemented in distributed form in the ScaLAPACK library, is known to exhibit
a severe performance degradation for large numbers of processes. Our calculations are
done with the PEXSI solver, which circumvents diagonalisation by constructing directly
the density-matrix using combined pole-expansion and selected-inversion algorithms. It
exploits the sparsity of the H and S matrices in SIESTA, resulting in an improved com-
plexity scaling as a function of system size N , namely N (0,5+D/2), where D is the di-
mensionality of the system. As can be seen in Ref. [17], the PEXSI solver is dramatically
more efficient and scalable than ScaLAPACK for this kind of system.

Most of the remaining 10% of the CPU time is taken by the routines called to com-
pute the Hamiltonian during the SCF cycle. These exhibit a linear scaling with system
size, and their parallelisation is quite efficient, around 90% for about 1000 processes, and
around 70% for 2100 MPI processes. This strong dependence on the solver is demon-
strated in Fig. 30 , where we compare the scaling of the initial version of the code with
the optimized one. The big improvements are clearly visible. Moreover, we see that the
scaling of the optimized version is virtually the same as the scaling of the solver part
alone, demonstrating that this section represents the big remaining bottleneck.

http://www.max-centre.eu 55

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 27: Timings and parallel efficiency of the version of the code with improved
initialization routines.

http://www.max-centre.eu 56

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 28: Traces of parallel execution of the code: top panel, reference version; bottom
panel: version with fixes to the initialization bottlenecks.

Figure 29: Traces showing a zoom of the initialization part: top panel, reference version;
bottom panel: improved version.

http://www.max-centre.eu 57

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Figure 30: Scaling of the initial and the optimized code, together with the scaling of the
solver part alone. The data is taken from Fig. 26 and Fig. 27 .

http://www.max-centre.eu 58

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

5 Structured plan of forward activities

5.1 QUANTUM ESPRESSO

Optimise multi-threading and accelerator offloading. A general optimization of the
usage of multi-threading and the offloading of massive parallel parts to accelerators will
allow to improve the performances for those use cases in which each diagonalisation
pool may be contained within a single node. In these cases the efficient offloading to
accelerators will make FFT and parallel linear algebra more efficient, avoiding commu-
nication bottlenecks. Multi-threading will be used to share the work done on bands (those
contained within each band group) and projectors. This optimization will be crucial for
the sustainability of high throughput computations in exascale machines and will also
allow to use efficiently the code in the new generations of workstations equipped with
accelerator devices.

Improve the scalability of iterative eigensolvers. Profiling of very large use cases
demonstrates that the Davidson iterative diagonalisation turns to be a major bottleneck.
Davidson operates on the whole block of eigenvectors at the same time. With a moderate
number of eigenstates this is in fact an advantage with respect to methods where eigen-
states must be accessed sequentially like the CG diagonalisation, but requires an exact
diagonalisation ofND×ND matrices withND ≥ 2NB , number of bands. For this reason
we are currently considering alternative methods which allow to deal with smaller-size
blocks of eigenstates. Methods currently under scrutiny are RMM-DIIS [18], ParO [19]
and PPCG [20].

Rationalization of I/O. The profiling the large-size use cases indicates that the I/O pol-
icy currently adopted in QUANTUM ESPRESSO, both when reading and when writing,
may become inadequate when the number of MPI tasks is very large. Planned actions
include:

• Read input, restart (XML) files, and pseudopotential files on a single MPI task,
broadcast data to all other tasks;

• Examine the possibility to save large binary records (wavefunctions and charge
density) in single precision;

• Consider using parallel HDF5, reorganizing the way distributed data (wavefunc-
tions and charge density) is written in order to minimise the number of tasks and
the communication load needed to re-distribute read data across tasks, while still
keeping portability with respect to the number of MPI tasks.

Improve scalability and performance of CP code. Car-Parrinello (CP) code for large
systems with thousands of atoms (see Fig. 7) displays a bottleneck in the orthogonali-
sation of the electronic wave functions, which was not unexpected given the size of the
matrices involved (more than 10000 × 10000). As anticipated in the previous chapter,
analysing the code we trace back the cause to a sub-optimal parallelisation of matrix
multiplications, with doubly distributed matrices: over the linear algebra ortho group,
and band group. Moreover we identify a few other places, where atoms (usually less

http://www.max-centre.eu 59

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

than one thousands in number) were replicated across processors (with few atoms, this
is certainly the best strategy, since atoms are not the most relevant data structure in CP
simulations), with the computation on ultra-soft pseudo-potential projectors replicated
as well. For large systems distributed on tens of thousands of processor, even a small
fraction of the computation left undistributed will start to dominate.

Concerning the CP code, for the next months of MAX projects within the activity of
WP1, we plan to:

• improve the parallelisation of the ortho kernel;
• optimise the computation of ultra-soft pseudo-potential projectors.

5.2 Yambo

I/O efficiency, including parallel I/O. While collecting the benchmark data shown in
this report, mostly taken on the KNL partition of Marconi@CINECA, we have observed
a sensible degradation of the I/O performance (and in turn of the wall-time) when HDF5-
based parallel I/O was in use. Yambo has recently implemented this feature and we still
need to investigate extensively the reasons of the performance loss. More generally, the
overall efficiency of I/O will be addressed and analysed explicitly.

Distributed data structures. Strictly related to the previous issue is the definition of
the parallel layout for distributed data. This is crucial to Yambo, which deals with
rather large datasets (think e.g. to the spatial and frequency dependent response func-
tion χ0(G,G′, ω), where the number of G could be of the order of tens of thousands
or more, or the Bethe Salpeter kernel represented on the space of transitions). Several
options are currently available in Yambo (stripe distribution for full or triangular matri-
ces or ScaLapack /BLACS grids), mostly dependent on the required processing of the
data (including I/O dumping). Accurate evaluation of the efficiency and scalability of the
conversion from one distribution to another is needed.

MPI load imbalance. The manybody methods implemented by Yambo are usually
simple to parallelise in terms of computation (in view of the large amount of computation
to be performed), while tend to suffer because of load imbalance. At the moment the
scheduling of MPI tasks is static, while the one of OpenMP threads, most of the time
working at the same level, is dynamical. If needed, more advances strategies to address
load balancing (eg a master-slave approach) will be considered and evaluated.

Alternative approaches for portability on accelerated machines. So far, Yambo
portability on GPU-accelerated machines has been based on the use of CUDA Fortran.
While being very numerically efficient and easy to adopt, this is limited to NVIDIA
GPUs and is a proprietary extension of Fortran (currently implemented only by the PGI
compiler). In the scenario, where multiple accelerator HWs and multiple SW stacks are
going to appear on the market (besides NVIDIA and AMD, accelerated HW is expected
also from Intel), we plan to implement and evaluate alternative porting strategies. Among
these, directive-based porting (OpenACC and OpenMP 5.0) and/or explicit CUDA sup-
port.

http://www.max-centre.eu 60

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Memory footprint on GPU-accelerated machines. Present results for the numerical
and parallel performance of Yambo ported on GPUs are very encouraging. Nevertheless,
one aspect that can be threatening to Yambo use cases is the control of memory footprint,
especially in situations where one MPI task per GPU is used, i.e. when data distribution
can be limited. A detailed investigation of Yambo memory usage on GPUs, and more
generally on accelerators, is currently of uttermost importance.

5.3 FLEUR

Scalability of the code. After the fundamental data restucturing of the matrix setup
part, the detailed investigation of the performance and scalability should be repeated. We
do not expect the appearance of the load unbalance in the matrix setup part, but this as-
sumption needs to be verified. The performance of this part will be studied in details,
in particular, algorithmically different constituents (e.g. spherical and non-spherical ma-
trix set up) will be investigated separately in order to identify the promising optimization
strategies. We also plan to improve the load balance and hence the scalability of the new
charge part. An additional issue is a tendency that every newer supercomputer architec-
ture has a lower machine balance (i.e. the relation of the memory bandwidth to the peak
performance) than a previous one (e.g. the machine balance of the CLAIX 2018 cluster,
Intel Skylake, is more than twice less than that of the CLAIX 2016, Intel Broadwell),
which makes codes even more memory-bound.

Possible communication bottlenecks with large benchmarks. The STO system, our
so far biggest benchmark, has a special geometry so that several k-points need to be
calculated. Although the almost ideal scaling over many k-point was many times seen
with smaller unit sets, it should be verified for simulations with such a large unit cell. The
necessity to communicate eigenvectors of several large dense complex matrices (340k X
340k in this case, 2 TBytes each) could lead to a bottleneck which would then need to be
eliminated.

Performance fluctuations. While performing the calculations with large (>1000 atoms)
benchmarks, we observed large fluctuations of the performance for the computationally
intensive code parts which lead to the increase of the wallclock execution time up to three
times. Performance counter measurements have shown that in these cases the CPU fre-
quencies of some nodes were dropped down to the half of their usual values. We never
observed such behaviour for the smaller benchmarks and it should be investigated further.

Offloading onto GPU. Matrices set up and diagonalisation are the two most computa-
tionally intensive parts of the code and are independent for different k-points. This and
the fact that only 15% of the eigenvectors are needed makes them ideal candidates for
the offloading onto an accelerator.

5.4 BigDFT

AiiDA plugin. To perform these benchmarks, an AiiDA plugin has been developed
for BigDFT, allowing for a seamless integration of AiiDA in BigDFT’s notebook work-
flows. This work will be stabilized and released in the next weeks.

http://www.max-centre.eu 61

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

Performance prediction. For large-scale calculations, the number of node hours which
are needed to perform a benchmark may easily become important. Users and, more im-
portantly, developers, may thus need a large amount of computational resources to iden-
tify bottlenecks and verify that the proposed solutions provide a relevant improvement in
the performances. To obtain good performances on such use-cases, it is common to try
several algorithmic alternatives, to relax synchronizations as much as possible to allow
the applications to opportunistically use resources, or to rely on automatic scheduling
and load-balancing techniques. The efficiency of such approaches is difficult to assess
and highly depends on the target system. Furthermore, the corresponding implemen-
tations are quite complex and thus quite error-prone. It is not uncommon in dynamic
and highly optimized approaches to obtain efficient implementations that suffer from
rare non-deterministic deadlocks or failstop errors which are extremely difficult to nar-
row and debug. Another argument against direct experiments is that they provide only
limited experimental control, hindering the reproducibility of experiments.

Hence, both the performance and the correctness of these systems must be consid-
ered. This induces very different techniques: most performance evaluations reason about
representative or average executions, while correctness must be evaluated over all pos-
sible executions. Performance assessment through pure theoretical analysis often man-
dates stringent and ultimately unrealistic assumptions regarding the underlying platform
and/or the application, which is why most research results come from empirical experi-
ments. Virtualisation and emulation techniques can be used to run real applications on
virtual machines (similarly to in-vitro experiments elsewhere). This approach greatly in-
creases the ability to control experiments, but the process is technically very demanding,
leading to increased costs in terms of time and labor. Also, the systems built to this end
are typically so complex that it is difficult to assess their correctness.

Performance simulation is an appealing alternative to study such systems. It consists
in the prediction of the system’s evolution through numerical and algorithmic models.
The SimGrid framework [21] constitutes a notable framework to perform such experi-
ments. This versatile scientific instrument has been used for simulation studies in Grid
Computing, Cloud Computing, HPC, Volunteer Computing and P2P Systems. It has also
been shown to be both more realistic and more scalable than its major competitors, thus
lowering the boundaries between research domains.

BigDFT has already been partly ported on top of SimGrid and very promising simu-
lation results have been obtained [22]. In the future, we plan to include in our benchmark
calculations simulation of the performances of the same bench datasets that are consid-
ered in the MAX repository. If this techniques proves successful, it would not represent
a simple technical improvement, but a radical epistemic shift; the developer will be able
to test and validate the performances of a run at the exascale level without the need for a
huge amount of computational resources for the validation of the approach.

Libconv library. The main bottleneck identified in BigDFT is computation costs, and
for non-hybrid functionals, mainly convolutions. Libconv is an auto-tuned, BOAST-
based, convolution library meant to replace most of the BigDFT convolution kernels and
provide optimized versions for each architecture and parameter value. During generation
of the library, each kernel is generated for each set of parameters dozens of times with
various optimizations applied, and benchmarking is performed on each one. The best

http://www.max-centre.eu 62

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

kernels are then selected and used in the resulting library, with brokers generated to
automatically select the best version for every call. A generic interface has been designed
to facilitate integration of the library in DFT codes, with BigDFT as the first user.

5.5 CP2K

Interface with COSMA library. Preliminary results of the communication optimal al-
gorithm for matrix-matrix multiplication implemented in COSMA library shows a good
performance in the standalone PDGEMM tests. The work will be continued in the fol-
lowing directions:

• Use the PDGEMM wrapper for COSMA inside CP2K and test the full application
in the production runs

• Port COSMA to AMD/ROCm

• Performance optimisation of internal COSMA functions related to the parallel and
local data remapping

• Interface COSMA with SIRIUS library

DBCSR library. DBCSR library already has the highly-optimised Intel CPU and NVIDIA
GPU back ends. The work will be continued to create the AMD/ROCm and forthcoming
EuroHPC architecture back ends. We also investigate the possibility of transfer learning
to enable the optimal generation of GPU kernel parameters on the new architectures with-
out running the auto-tuning and machine learning on them and using only the knowledge
of the current GPU architecture for which DBCSR is optimised.

Interface with SIRIUS library. SIRIUS is already ported to NVIDIA GPU architec-
ture and can take the full advantage of the GPU nodes. The work will be continued to
improve performance of the SIRIUS library, in particular, its internal FFT3D implemen-
tation will be replaced by a newly developed SpFFT library. Another action that we plan
to accomplish in this project is a port of SIRIUS to the AMD/ROCm architecture.

5.6 SIESTA

From our analysis of this scientific use case, it follows that the most relevant bottlenecks
of the “core” part of SIESTA (that devoted to setting up the Hamiltonian) have been re-
solved on a pure MPI level. Further improvements in efficiency should come from hybrid
MPI/OpenMP parallelization. SIESTA contains some OpenMP parallelism, but it is far
from being complete. The reason is the presence of heavy data indirection in the code, re-
sulting from indexing of the sparse data structures that are essential to the operation of the
code. Rather than working at the loop level, it will be advantageous to explore task-based
parallelism, as supported by newer versions of OpenMP. The other major area of focus
for further improvement of the performance and scalability of SIESTA is the solvers,
which take the Hamiltonian and Overlap matrices and compute the density matrix, which
encapsulates the information about the electronic structure. In fact, all the solvers cur-
rently in use in SIESTA are provided by external libraries. Ideally, it is the developers

http://www.max-centre.eu 63

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

of these libraries (and programmers working on their optimization for specific architec-
tures) who should be concerned with portable performance. Client codes like SIESTA,
respecting the proper interfaces, should be able to simply link to the appropriate version
of the library. For example, the PEXSI library is being continuously improved: a new
scheme needing fewer poles was recently introduced; a new level of parallelism in the
determination of the chemical potential is now available, and new symbolic factorization
code, with better parallel-scaling properties, is in the process of being made the default.
SIESTA will directly benefit from these developments.

Some of the solver libraries used in SIESTA fall directly under the purview of MAX:
this is the case of the CheSS and O(N)-OMM linear-scaling libraries. They can only be
used for systems with a gap separating occupied and unoccupied states, but their favor-
able scaling makes them quite important. For CheSS, it is planned within WP3 to improve
SIESTA’s efficiency through the on-the-fly generation of a system-optimized basis set of
lower cardinality and hence narrower eigenvalue spectrum, thus reducing the number of
polynomial terms needed in the expansion of the Fermi operator. For the O(N)-OMM
solver (which was the original solver in SIESTA), the optimization work (also scheduled
within WP3) is to leverage the increased performance of the DBCSR sparse-matrix mul-
tiplication library, which has been extracted from CP2K and in fact belongs to the MAX
family of modules. For the other solvers in use, our task will be to monitor continuously
the performance of existing and upcoming versions of the libraries in different regimes
(size of the system, number of eigenvectors sought (if relevant)) and, crucially, on differ-
ent architectures. This is a major effort. As an example, we have started to evaluate the
usage of GPUs at the solver stage, relying on libraries providing GPU support for the lin-
ear algebra operations used. We did the tests on the CTE-Power block of MareNostrum
at the BSC, whose nodes contain 40 IBM Power9 cores and 4 Volta Nvidia GPUs. We
tested first the ESSL-CUDA library, not portable to non-IBM systems, but readily avail-
able and offering complete code compatibility, as well as “transparent” CPU and GPU
interoperability. The initial results of the benchmarks do not show dramatic speedups,
and suggest that more control over the data movement might be necessary. The next
stage involves using the MAGMA library, which offers more control, as well as being
more portable. This kind of profiling work for hybrid architectures and programming
models will be an important part of our future actions in WP4. For the reasons of data
indirection mentioned above, it is likely that most of the performance gains will come
for the solver stage, and less so for the routines involved in the setup of the Hamiltonian
during the SCF loop.

http://www.max-centre.eu 64

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

6 Conclusion and lessons learned

We decided to base our analysis on scientific cases of interest, rather than directly on
application requirements, since this would have implied a deeper understanding of the
constraints in the hardware evolution, algorithms, languages and paradigms, which are
still a matter of debate even in the HPC field. We have therefore decided to focus the
scope of our performance analysis on the identification of bottlenecks that would limit a
selected class of scientific cases. Such use cases have been chosen as representative of
prototype calculations that may exploit future exascale systems. This approach results to
be pragmatic and effective in focusing and directing our effort for codes re-factoring and
optimisation.

As a byproduct, the identification, description and recording of several effective sci-
entific cases is a first important result of this work, which has built an extremely valu-
able repository for the users’ community. Along with the use cases we now also have a
baseline version of the MAX codes and a quite significant database of performance and
profiling results, all stored in the MAX Gitlab repository. All these data will be used
by WP4 as well as by all other MAX WPs to asses and validate the WP outcome and
progress. It is also a remarkable fact that, even if the use of AiiDA framework to help
collecting the benchmark results in a semi-automatic way was foreseen only for later ac-
tivities, many of the profiling runs were already performed using AiiDA plug-ins. We
think that automatising the collection of these data will greatly improve the productivity
of HPC experts and developers.

Nevertheless, the lack of resources to run large benchmarks, profiling and debugging
campaigns clearly arose as a very critical issue for European HPC as a whole. A single
run that lasts, say, 1 hour on 100K compute cores burns 100K CPU/hours, and to stay
at the forefront of code development and exploit next generation machines, we need to
run many of these large scale test runs. We think, and this is a request to EuroHPC that
we will ensure to present in the proper discussion groups, that at lest 5%, (10% would
be ideal) of all EuroHPC systems should be dedicated to the above activities, otherwise
the availability of European exascale software will be at risk. For this deliverable, we
relied mostly on the availability of CPU time guaranteed by HPC centres and MAX
developers on their own or national budget. This cannot be taken as granted, and without
a committed budget all these activities are at risk. This does not concern only MAX, but
rather all CoEs as well as exascale software development in general.

As the main result of this deliverable we report the profiling analysis performed on
all MAX codes for the selected scientific use cases, the identification of bottlenecks that
should be solved or mitigated along the path towards exascale, and, even if not foreseen
at first, some early activities to improve the performance of the codes. The collected
database of benchmarks results is then complete and will become the consolidated base-
line against which we will assess and compare code refactoring in future MAX activities.
Here it is important to remark, as anticipated in the executive summary, that bottlenecks
and future improvements are expected to be more and more specific to different classes
of use cases. In this conditions it will be much harder for our applications to obtain
single improvements effective across all working conditions. MAX applications are in
fact frameworks with many capabilities that trigger different internal algorithms and data
distributions which may display quite different computational patterns. Nevertheless an
improvement, unless for specific cases, it is expected to improve or at least not worsen

http://www.max-centre.eu 65

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

the performance of the codes under other working conditions. It may also happen that
the removal of a deep bottleneck could trigger a complete refactoring of the application,
which will then require actions and efforts at the community level even beyond MAX.

As a lesson learned in preparing this deliverable, we observe that when running sci-
entific cases that push both the code and the HPC system to their limits in terms of
resources and scalability (inside and outside the node), a lot of problems may occur con-
cerning the stability of the HPC system itself (actually reliability is one of the 10 most
important issues spotted out for exascale computing). The profiling tools (usually meant
to work under controlled conditions on a fraction of the resources of the system) may
fail to save traces and logs or to process them post mortem. The codes running under
conditions (e.g. thousands of nodes) never tested before may display unexpected or un-
observed bugs. Even if this is sometimes frustrating from the side of the developers, it
could be extremely helpful to improve the overall robustness of the future exascale Euro-
pean systems and software stacks. Then we figured out, and we propose, to include MAX
scientific cases among the codes and datasets to be used in assessing EuroHPC systems
and, why not, already in the procurement phase.

References

[1] Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. Journal of Physics: Condensed Mat-
ter 21, 395502 (2009).

[2] Quantum espresso vs vasp. URL https://www.nsc.liu.se/~pla/blog/
2013/12/18/qevasp-part3/.

[3] Avvisati, G. et al. Orbital symmetry driven ferromagnetic and antiferromagnetic
coupling of molecular systems. Nano Lett. 18, 2268–2273 (2018).

[4] Atambo, M. et al. Electronic and optical properties of doped tio2 by many-body
perturbation theory. Phys. Rev. Mater. 3, 045401 (2019).

[5] Denk, R. et al. Probing optical excitations in chevron-like armchair graphene
nanoribbons. Nanoscale 9, 18326 (2017).

[6] Baroni, S. et al. First release (R1) of the MAX codes (2016). https://drive.
google.com/file/d/0BzCqlvvD4LOiTGlHOVVZVlZOV0U/view.

[7] Sangalli, D. et al. Many-body perturbation theory calculations using the yambo
code. J. Phys: Condens. Matter 31, 325902 (2019).

[8] Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: An ab initio tool for
excited state calculations. Comput. Phys. Commun. 180, 1392 – 1403 (2009).

[9] Denk, R. et al. Exciton dominated optical response of ultra-narrow graphene
nanoribbons. Nature Commun. 5, 4253 (2014).

http://www.max-centre.eu 66

https://www.nsc.liu.se/~pla/blog/2013/12/18/qevasp-part3/
https://www.nsc.liu.se/~pla/blog/2013/12/18/qevasp-part3/
https://drive.google.com/file/d/0BzCqlvvD4LOiTGlHOVVZVlZOV0U/view
https://drive.google.com/file/d/0BzCqlvvD4LOiTGlHOVVZVlZOV0U/view
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D4.2
First report on code profiling and bottleneck identification,
structured plan of forward activities.

[10] Blügel, S. & Bihlmayer, G. Full-potential linearized augmented planewave method.
In Grotendorst, J., Blügel, S. & Marx, D. (eds.) Computational Nanoscience: Do It
Yourself! - Lecture Notes, vol. 31, 85 (NIC Series, 2006). ISBN: 3-00-017350-1.

[11] Alekseeva, U., Michalicek, G., Wortmann, D. & Blügel, S. Hybrid parallelization
and performance optimization of the fleur code: New possibilities for all-electron
density functional theory. In Aldinucci, M. (ed.) Euro-Par 2018, LNCS 11014,
735–748 (Springer International Publishing AG, 2018).

[12] Uranium dioxyde benchmark with bigdft. URL https://gitlab.com/
max-centre/benchmarks/blob/master/BigDFT/UO2/bench_
marconi_uo2_3/benchmarking-UO2-3.ipynb.

[13] Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: au-
tomated interactive infrastructure and database for computational science. Comp.
Mat. Sci. 111, 218 – 230 (2016).

[14] COSMA library. URL https://github.com/eth-cscs/COSMA.

[15] DBCSR library. URL https://github.com/cp2k/dbcsr.

[16] SIRIUS library. URL https://github.com/electronic-structure/
SIRIUS.

[17] Lin, L., García, A., Huhs, G. & Yang, C. SIESTA-PEXSI: massively parallel
method for efficient and accurate ab initio materials simulation without matrix di-
agonalization. Journal of Physics: Condensed Matter 26, 305503 (2014).

[18] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

[19] Dai, X., Liu, Z., Zhang, X. & Zhou, A. A parallel orbital-updating based optimiza-
tion method for electronic structure calculations (2015). arXiv:1510.07230.

[20] Vecharynski, E., Yang, C. & Pask, J. E. A projected preconditioned conjugate
gradient algorithm for computing many extreme eigenpairs of a hermitian matrix.
Journal of Computational Physics 290, 73 – 89 (2015).

[21] Casanova, H., Legrand, A. & Quinson, M. Simgrid: A generic framework for
large-scale distributed experiments. In Tenth International Conference on Computer
Modeling and Simulation (uksim 2008), 126–131 (2008).

[22] Bédaride, P. et al. Toward better simulation of mpi applications on ethernet/tcp
networks. In Jarvis, S. A., Wright, S. A. & Hammond, S. D. (eds.) High Perfor-
mance Computing Systems. Performance Modeling, Benchmarking and Simulation,
158–181 (Springer International Publishing, Cham, 2014).

http://www.max-centre.eu 67

https://gitlab.com/max-centre/benchmarks/blob/master/BigDFT/UO2/bench_marconi_uo2_3/benchmarking-UO2-3.ipynb
https://gitlab.com/max-centre/benchmarks/blob/master/BigDFT/UO2/bench_marconi_uo2_3/benchmarking-UO2-3.ipynb
https://gitlab.com/max-centre/benchmarks/blob/master/BigDFT/UO2/bench_marconi_uo2_3/benchmarking-UO2-3.ipynb
https://github.com/eth-cscs/COSMA
https://github.com/cp2k/dbcsr
https://github.com/electronic-structure/SIRIUS
https://github.com/electronic-structure/SIRIUS
arXiv:1510.07230
http://www.max-centre.eu

	Executive Summary
	Introduction
	Scientific use cases
	List of scientific use cases
	Quantum ESPRESSO
	Yambo
	FLEUR
	BigDFT
	CP2K
	SIESTA

	Profiling results, bottlenecks, and early actions
	Quantum ESPRESSO
	Profiling on pw.x
	Profiling of pw.x on GPUs
	Profiling on cp.x

	Yambo
	Profiling on Yambo: the GW workflow
	Defective TiO2 structure: MPI and OpenMP scaling
	Chevron-like polymer: MPI scaling
	Intra-node profiling on Yambo: GPUs

	FLEUR
	Performance of the FLEUR MaX Release 3
	New data layout

	BigDFT
	Uranium-dioxyde benchmarks - GPU
	Bench Submission through AiiDA
	Uranium-dioxyde benchmarks - KNL

	CP2K
	RPA calculations with CP2K
	Linear scaling calculations
	Plane-wave pseudo potential calculations

	SIESTA

	Structured plan of forward activities
	Quantum ESPRESSO
	Yambo
	FLEUR
	BigDFT
	CP2K
	SIESTA

	Conclusion and lessons learned
	References

