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Remarks on questions

Use Q&A button during the talks to ask
guestions

You will also get questions on your
background

Q&A session after the talks
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= Theoretical background

= The FLAPW method and the LAPW basis

= Separation of core electrons from valence electrons
= Local orbitals

= Film setups

= Obtaining high-presision results

= Semicore states and ghost bands
= Systematic convergence in MT spheres

= Strengths, Challenges, and Features
= Using fleur
= Conclusion
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What is Fleur?

Features

= FLAPW DFT code = Spin-orbit coupling
= All electrons = Noncollinear magnetism
= Full potential = Many XC functionals
= Linearized augmented = Forces
plane waves = Unit cells several 1000

= Open source (MIT license) atoms

= Mainly developed in Julich
= Complex magnetic systems, surface magnetism
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Environment of Applications
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Where in MaX I1s FLEUR?

Relativity
= non-relativistic

m scalar-relativistic

m fully relativistic

. S

/

~

rFlepr.ci..wntatio:m of wave func-
tions

= |inear combinations of atomic
orbitals (LCAO)

Qpv(r) \: E, "\bv(r) ‘

[ + [ VH{r)] + [ Ve)f(r)J +

[ Contributions to potential
m pseudopotential

= all electron

Representation of potential
= spherical approximation

n full potential

p

\/

= plane waves (PW)

m linearized augmented plane
waves (LAPW)
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The LAPW basis

= Atom-centered functions in MT spheres matched in value and
slope to plane waves in interstitial region (IR)

1 Li(k+G)r
me( ) forr ¢ IR

oka(r) =4 S [akaup(r,, EX) + bEau (1o, EX)] Yi(fa) forre MT®
L

= ui* and uf* are solutions and energy derivatives for the spherical
potential at energy parameters E;*

n Muffin-tin i Interstitial Region (IR)
(MT) |
Interstitial |
Region (IR) ) L P
\/ SN—— ~—_
|
|
Muffin-tin | i
for atom « u(r), u(r) | plane wave
(MT<) I |

MT
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The linearization within the LAPW basis

= Description in MT spheres is not systematically improved by
iIncreasing the reciprocal cutoff parameter Kmax

Linearization of solutions u; at arbitrary energy e

= U (Far€) = U (o, E) + (e = EP)UF (ra, EfY) + O [(e = EP)?]
= Due to the restriction to the function space spanned by u*(r., E}*)
and uj(r., E{*) we obtain a linearization error.

= This description is sufficient to obtain accurate results for many
materials.

DRIVING
MAX THE EXASCALE
TRANSITION



Separation of core electrons from valence

electrons

= The LAPW basis is orthogonal to core electron states.

= (If core electron states vanish at MT sphere boundary)
= Allows separate determination of core electron wave functions and
energies
= Core electrons

= Representation for each atom separately on radial mesh
= Fully relativistic treatment

= Valence electrons

= Representation by LAPW basis
= Scalar-relativistic description in MT spheres
= Optional inclusion of spin-orbit coupling

= Semicore states can lead to ghost bands
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Extending the LAPW basis with local orbitals

Additional basis functions localized in MT spheres
Plo(r) = [dPul(ra, Ef) + BLUX (1, Ef) + cPUP (Fa, EP)] Yi(Fa)

= Mainly used to describe

i Intergtitial
semicore states Muffin-tin MT) | R%igﬁ(;n
I
= Determination of a, b)°, and |
| - |
c,° by enforcing zero value —
and slope at the MT boundary, |
as well as a normalization |
condition on the local orbital |
. lo |
ut,(r,Et,), uf(r,E f), ME(F,EE ) : Zero
0 R
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Extending the LAPW basis with local orbitals

Additional basis functions localized in MT spheres
Plo(r) = [dPul(ra, Ef) + BLUX (1, Ef) + cPUP (Fa, EP)] Yi(Fa)

= Semicore states (SCLO)

= Choose EP to be energy of Muffin-tin (MT)
semicore state

= Unoccupied orbitals (HELO)

Interstitial
Region
(IR)

|
|
|
|
|
|
|
|
o~ !
|
|
|
|
|
|
|
|
|

= Choose E° above Fermi
energy
= Higher derivative LOs (HDLO)
= Choose uf*(r,, Ef*) instead u(r.E), u(r.E), ug(r,Eﬁo) Zero
of up(r., EP) 0 Ryt
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Describing films and surfaces

= Film setups break periodicity
In one direction
= Description by basis sets
with built-in periodicity:
= Periodic slab calculations
= Adapt basis set (Fleur)

= Simulate surfaces by
increasing film thickness

2 nm 11 I

M. Bode et al., Nature 447, 190 (2007

S
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The LAPW basis for films

ok, 6(r) =

r 1 AHi(k+G)r
75 € [ forr € IR

> |8k Ul (ra, B7) + iU (1, B1)| Ye(Ba) for re MT®

L

vac vac vac Vac vac vac
AU, (2. E%) + BEISUTS, (2. E™)|
X

A Allk+Gy)r vac
=€ I +Gr forr e VR

\

_____ m /vac  jvac

U, G, Uk, G, solutions,

g
<D< 888 Interstitial Region (IR) vacuum potential at

\OOG Muffin-tin (MT) ggggy parameters

energy derivatives to

<—/L Vacuum Region 2 (VR?)

» G, =27wn/D

A = surface area
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Parameters in FLEUR

Kmax reciprocal plane-wave cutoff for LAPW basis

I5ax ~ cutoffs for / expansion of LAPW basis in MT spheres
Ry MT radii

E/ energy parameters

Gmax reciprocal plane-wave cutoff for density and potential
D, D vacuum boundary for film setups
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Semicore states and ghost bands
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Semicore states and ghost bands — with SCLO
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Choice of the energy parameter (fcc Ce)

{|=— LAPW

— LAPW+HDLO

energy

center of mass

atomic
energy
parameter™
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Systematic convergence in MT spheres (fcc Ce)
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Strengths and Challenges for Fleur

Strengths:
= Possibility to produce precise reference results
= Everything where the core electron spectrum is of direct relevance

= Elements including f electrons in valence shell
= Complex magnetism, spin-orbit coupling
= Example in following talk by Uliana Alekseeva

Challenges in LAPW:

= Complicated expressions due to sophisticated basis

m Stress tensor
= Phonons

= Constraint of non-overlapping MT spheres
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FLEUR features

= Noncollinear magnetism
= Spin-orbit coupling
= Spin spirals (with generalized Bloch theorem)
= Extraction of parameters for (extended) Heisenberg model
= exchange coupling parameters, Dzyaloshinskii-Moriya interaction,

= Magnetic force theorem
= LDA+U, Hybrid functional
= Application of external fields
= EELS
= Magnetic circular dichroism
= Band unfolding
= Vacuum DOS (for STM images)
= With Fleur-SPEX: GW approximation to MBPT, ...
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Using Fleur

= Complex parametrization cannot be performed solely by the user
= Usage of an input generator

= Requires only basic structural input for the unit cell
= Generates Fleur input with material-adapted default parameters

Fleur input file (inp.xml)
= Can be modified by the user...

= ...to increase cutoff parameters
= ...activate special calculation modes

= Automatization with AiiDA
More on this in the talk by Daniel Wortmann
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Conclusion

Discussed . Muffin-tin i Interstitial Region (IR)
(MT) !
= LAPW basis, local orbitals, film i
0 [\ | -~
setups \/ ~— ~—
= Obtaining high-precision results o L
u{ r), Lff r | plane wave
= Strengths, Challenges, and Features | 7=
= Fleur input files
More on www.flapw.de: R <]
= Get the code L ;Z>( \
= Extensive documentation e o
= References LT TN A
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