
MaX	“Materials	Design	at	the	Exascale”,	has	received	funding	from	the	European	Union’s	Horizon	2020	
project	call	H2020-INFRAEDI-2018-1,	grant	agreement	824143

16 June 2020, 3:00 PM – 4:00 PM CEST

Andrea Ferretti
CNR-NANO

Yambo	at	HPC:				
running	in	parallel	on	GPUs	

electronic structure methods

ρ(r)

G(r, r′,ω)

γ(r, r′)

Γ(r1, r2, r′1, r
′
2)

Ψ({r})
RDMFT

DFT

MBPT G2
G3

ρ(r,ω)

ρ(r, i)

Gloc(r, r
′,ω)

electronic structure
methods compute-
intensive

GW and MBPT at the
high-end usage of
computational resources

the exascale challenge
in high performance computing

10^18 flops/s
10^18 Bytes
abrupt technology changes
action is needed for full
exploitation
multiple HW and SW stacks
memory hierarchies

HPC & exascale

Summit: IBM power +
NVIDIA GPUs Aurora: CRAY + Intel Acc

Frontier: AMD EPYC + AMD GPU
eg in the US:

GPU porting strategies for MBPT / GoWo

Experience made with the yambo code

Reference technical details

Opportunities & Challenges

Outline

homogeneous arch

one/multiple devices
connected to each host
different memories
vertical HW

heterogeneous arch

collections of nodes
with a given number
of cores
ex: most local clusters

host host host host

dev dev dev dev

host host host host

accelerated HPC architectures

large compute capabilities
little memory

yambo on GPUs

considering canonical GW (N4) and BSE algorithms
implementation is plane-waves and pseudopotentials

need to represent data, handle data transfer from
host to device(s), compute on device.
NVIDIA GPUs: we use CUDA-Fortran (incl CUF kernels)
and CUDA opt libraries (cublas, cusolver, cufft)
watch out memory footprint on GPUs (usually, 1 MPI
task per accelerator)

host dev

disk

index mapping
read wfc from disk
wfc HOST2DEV
compute / reduce
DEV2HOST
damp to disk, MPI,..

WARN: distributed
LinAlg on GPU

yambo on GPUs

h mk|e�iq·r| nk+qi

dipoles RPA response Self-energy BSE

�0
q(G,G0,!)

�q(G,G0,!)

⌃x

⌃c(!)

| exc
mqi

ported run-levels

considering canonical GW (N4) and BSE algorithms
implementation is plane-waves and pseudopotentials

need to represent data, handle data transfer from
host to device(s), compute on device.
NVIDIA GPUs: we use CUDA-Fortran (incl CUF kernels)
and CUDA opt libraries (cublas, cusolver, cufft)
watch out memory footprint on GPUs (usually, 1 MPI
task per accelerator)

currently, NVIDIA GPUs are fully supported in YAMBO
(> v4.5.0; IP/RPA-opt, GW, BSE)
work is in progress to support different back-ends

important performance gain

yambo on GPUs

considering canonical GW (N4) and BSE algorithms
implementation is plane-waves and pseudopotentials

need to represent data, handle data transfer from
host to device(s), compute on device.
NVIDIA GPUs: we use CUDA-Fortran (incl CUF kernels)
and CUDA opt libraries (cublas, cusolver, cufft)
watch out memory footprint on GPUs (usually, 1 MPI
task per accelerator)

heterogeneous architectures: MPI + OpenMP + CUDA

performance (MPI)

complete GW workflow for a
defected TiO2 crystal
small system, stress test
data obtained on Marconi KNL,
32 MPI tasks/node, 2 threads

data available at: http://
www.gitlab.com/max-centre/
Benchmarks

Early 2019 Nov 2019

memory distribution

heterogeneous architectures: MPI + OpenMP + CUDA

performance (OpenMP)

complete GW workflow for a
defected TiO2 crystal
small system, stress test
data obtained on Marconi KNL,
8 MPI tasks/node

data available at: http://
www.gitlab.com/max-centre/
Benchmarks

host

dev

in view of

linear response

q transferred
momenta (MPI q)

Xo bands
(MPI c,v)

k momenta
(MPI k)

space variables
(MPI g)

�(q,!) = [I � �0(q,!)v(q)]
�1 �0(q,!)

X_ROLEs= “g q k c v” # CPUs roles (q,k,c,v)
X_CPU = “1 1 2 4 2” # CPUs for each role
X_Threads = 4 # num threads for
 Response function
X_nCPU_LinAlg_INV = 64 # CPUs for Linear Alg

MPI-cv best memory distribution
MPI-k as efficient, some mem dupl
MPI-q may lead to load unbalance,
 and memory duplication
OpenMP efficient, need extra mem

GW (corr) self-energy

q transferred
momenta (MPI q)

G bands
(MPI b)

QP states
(MPI qp)

space variables
(OMP SE_T)

SE_ROLEs= “q qp b” # CPUs roles (q,qp,b)
SE_CPU = “1 2 8” # CPUs for each role
SE_Threads = 4 # num threads for
 self-energy calc

MPI-b best memory distribution
MPI-qp no communication, mem repl
MPI-q usually leads to load unbalance
OpenMP very efficient up to large
 number of threads

heterogeneous architectures: MPI + OpenMP + CUDA

Complete GW
workflow for a
N7-AGNR
graphene
nanoribbon

8 x

4-8 x

7.5 x

performance (GPU)

heterogeneous architectures: MPI + OpenMP + CUDA

performance (GPU)

complete GW workflow for a
defected TiO2 crystal
small system, stress test
data obtained on Marconi100,
4 MPI tasks/node;
4 V100 GPUs/node

data available at: http://
www.gitlab.com/max-centre/
Benchmarks

different levels of
efficiency across code
kernels

sub-optimal exploitation
of GPUs

heterogeneous architectures: MPI + OpenMP + CUDA

performance (GPU)

complete GW workflow for a
defected TiO2 crystal
small system, stress test
data obtained on Marconi100,
4 MPI tasks/node;
4 V100 GPUs/node

data available at: http://
www.gitlab.com/max-centre/
Benchmarks

algorithm for dipoles
refactored;
improvements for GPUs
(and CPUs)

timing pattern more
similar to CPU-only
(KNL);

system size: 72+1 atoms,
2000 bands, 6 Ry for Xo repr
(N=1317); ~290 occ states, 8
kpts.

heterogeneous architectures: MPI + OpenMP + CUDA

performance (GPU)

complete GW workflow for a
N7-AGNR on Graphene
large scale system
data obtained on Marconi100,
4 MPI tasks/node;
4 V100 GPUs/node data available at: http://www.gitlab.com/max-centre/Benchmarks

upto 8 PFlops run,
parallel efficiency > 50%
(wrt 16 nodes)

single run up to 600 nodes,
2400 GPUs, ~ 20 PFlops

64 irreducible kpts, 2000
bands, 5 105 G-vect density

compile with GPU support
./configure \
 FC=pgfortran \
 F77=pgfortran \
 CPP="cpp -E" \
 FPP="pgfortran -Mpreprocess -E" \
 PFC=mpif90 \
 CC=pgcc \
 --with-blas-libs="-lblas" \
 --with-lapack-libs="-llapack" \
 --with-fft-path="/opt/fftw/3.3.6-pgi" \
 --with-iotk-path="/opt/iotk/y1.2.2-pgi" \
 --with-libxc-path="/opt/libxc/2.2.3-pgi" \
 --with-netcdf-path="/opt/netcdf/4.4.1.1-hdf5-pgi" \
 --with-netcdff-path="/opt/netcdff/4.4.4-hdf5-pgi" \
 --with-hdf5-path="/opt/hdf5/1.8.19-pgi" \
 --with-scalapack-libs=" -L/opt/scalapack/2.0.1-openmpi-pgi/lib -lscalapack" \
 --with-blacs-libs=" -L/opt/scalapack/2.0.1-openmpi-pgi/lib -lscalapack" \
 --enable-cuda=cuda10.1,cc70,nollvm \
 --enable-open-mp \
 --enable-mpi \
 --enable-time-profile \
 --enable-memory-profile \
 --enable-msgs-comps

need PGI compiler
cc70 -> Volta
cc60 -> Pascal

running with GPU support

Typical usage

Control

example: 2 nodes, each with 16 cores and 2 GPUs
 => 2*2 MPIs, 8 OMP threads

16 c 16 c

export OMP_NUM_THREADS=8
mpirun -np 4 <other opts> yambo -F file.in

Yambo TIP:
use 1 MPI per card
complete with OMP threads within
the node
increase the number of nodes if men
footprint is too large
watch out for MPI/GPU binding

dev dev dev dev

conclusions & outlook

more and more computational capabilities available
(technology disruption)

MBPT expresses a significant computational complexity and
has the potential to exploit new generation architectures
hierarchy of methods with improving accuracy

Experience so far very positive ! (yambo, PWs, pseudopot, PPA)

opportunities

challenges

programming models (legacy codes, maintainability)
memory footprint
software components (distributed lin alg)
algorithm affinity (how does a smart algorithm fits the new HW ?)
(shall we rethink algorithms on purpose ?)

PROPOSAL
Designing the logo

Thanks !

P. Bonfa’ I. Marri D. Sangalli D. Varsano A. Marini

… and the whole Yambo team
 http://www.yambo-code.org

Follow us on:

@max_center2 http://www.max-centre.eu/

youtube/channel/MaX Centre eXascalecompany/max-centre/

