Dynamic control of octahedral rotation in perovskites by defect engineering

Engineering oxygen octahedra rotation patterns in ABO3 perovskites is a powerful route to design functional materials. Here we propose a strategy that exploits point defects that create local electric dipoles and couple to the oxygen sublattice, enabling direct actuation on the rotational degrees of freedom. This approach, which relies on substituting an A site with a smaller ion, paves a way to couple dynamically octahedra rotations to external electric fields.

Graphene decoupling through oxygen intercalation on Gr/Co and Gr/Co/Ir interfaces

The authors perform a density functional theory study of the effects of oxygen adsorption on the structural and electronic properties of Gr/Co(0001) and Gr/Co/Ir(111) interfaces. In both interfaces, the graphene-Co distance increases with increasing O concentration. The oxygen intercalation effectively decreases the electronic interaction, preventing the hybridization of graphene states with Co d orbitals, hence (partly) restoring the typical Dirac cone of pristine graphene.

Numerically Precise Benchmark of Many-Body Self-Energies on Spherical Atoms

In this paper, the authors investigate the performance of beyond-GW approaches in many-body perturbation theory by addressing atoms described within the spherical approximation via a dedicated numerical treatment based on B-splines and spherical harmonics. The authors consider the GW, second Born (2B), and GW + second order screened exchange (GW+SOSEX) self-energies and use them to obtain ionization potentials from the quasi-particle equation (QPE) solved perturbatively on top of independent-particle calculations.

Exploring the robust extrapolation of high-dimensional machine learning potentials

In this article appearing on Physical Reviews B, an international team comprised of young researchers from Italy and Switzerland show how, contrary to popular assumptions, predictions from machine learning potentials almost exclusively occur in an extrapolation regime. 

Workflow Engineering in Materials Design within the BATTERY 2030+ Project

In recent years, modeling and simulation of materials have become indispensable to complement experiments in materials design. High-throughput simulations increasingly aid researchers in selecting the most promising materials for experimental studies or by providing insights inaccessible by experiment. However, this often requires multiple simulation tools to meet the modeling goal.

Anomalous screening in narrow-gap carbon nanotubes

The screening of Coulomb interaction controls many-body physics in carbon nanotubes, as it tunes the range and strength of the force that acts on charge carriers and binds electron-hole pairs into excitons. In doped tubes, the effective Coulomb interaction drives the competition between Luttinger liquid and Wigner crystal, whereas in undoped narrow-gap tubes it dictates the Mott or excitonic nature of the correlated insulator observed at low temperature.

Coherence and de-coherence in the Time-Resolved ARPES of realistic materials: An ab-initio perspective

Coherence and de-coherence are the most fundamental steps that follow the initial photo-excitation occurring in typical pump-and-probe experiments. Indeed, the initial external laser pulse transfers coherence to the system in terms of creation of multiple electron–hole pairs excitation. The excitation concurs both to the creation of a finite carriers density and to the appearance of induced electromagnetic fields. The two effects, to a very first approximation, can be connected to the simple concepts of populations and oscillations.

Phonon-Assisted Luminescence in Defect Centers from Many-Body Perturbation Theory

Phonon-assisted luminescence is a key property of defect centers in semiconductors, and can be measured to perform the readout of the information stored in a quantum bit, or to detect temperature variations. The investigation of phonon-assisted luminescence usually employs phenomenological models, such as that of Huang and Rhys, with restrictive assumptions that can fail to be predictive. In this work, the authors predict luminescence and study exciton-phonon couplings within a rigorous many-body perturbation theory framework, an analysis that has never been performed for defect centers.

Ranking the information content of distance measures

Real-world data typically contain a large number of features that are often heterogeneous in nature, relevance, and also units of measure. When assessing the similarity between data points, one can build various distance measures using subsets of these features. Finding a small set of features that still retains sufficient information about the dataset is important for the successful application of many statistical learning approaches.

Efficient hot-carrier dynamics in near-infrared photocatalytic metals

Photoexcited metals can produce highly energetic hot carriers whose controlled generation and extraction is a promising avenue for technological applications. While hot-carrier dynamics in Au-group metals have been widely investigated, a microscopic description of the dynamics of photoexcited carriers in the mid-infrared and near-infrared Pt-group metals range is still scarce. Since these materials are widely used in catalysis and, more recently, in plasmonic catalysis, their microscopic carrier dynamics characterization is crucial.

Pages