
HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

D1.1

First report on MAX software architecture and
implementation planning

Pietro Delugas, Fabio Affinito, Laura Bellentani, Oscar Baseggio, Claudia
Cardoso, Ivan Carnimeo, Pietro Delugas, Fabrizio Ferrari Ruffino, Andrea

Ferretti, Alberto Garcia, Luigi Genovese, Gregor Michalicek, Nicola
Spallanzani, Davide Sangalli, Daniel Wortmann, and Stefano Baroni

Due date of deliverable 30/06/2023 (month 6)
Actual submission date 30/06/2023

Lead beneficiary SISSA (participant number 2)
Dissemination level PU - Public

http://www.max-centre.eu 1

Ref. Ares(2023)4562562 - 30/06/2023

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type Centres of Excellence for HPC applications
EuroHPC Grant agreement no. 101093374
Project starting/end date 01/01/2023 (month 1) / 31/12/2026 (month 48)
Website http://www.max-centre.eu
Deliverable no. D1.1

Authors Pietro Delugas, Fabio Affinito, Laura Bellentani,
Oscar Baseggio, Claudia Cardoso, Ivan Carnimeo,
Pietro Delugas, Fabrizio Ferrari Ruffino, Andrea
Ferretti, Alberto Garcia, Luigi Genovese, Gregor
Michalicek, Nicola Spallanzani, Davide Sangalli,
Daniel Wortmann, and Stefano Baroni

To be cited as Delugas et al. (2023): First report on MAX soft-
ware architecture and implementation planning. De-
liverable D1.1 of the HORIZON-EUROHPC-JU-
2021-COE-01 project MAX (final version as of
30/06/2023). EC grant agreement no: 101093374,
SISSA, Trieste, Italy.

Disclaimer

This document’s contents are not intended to replace the consultation of any applicable
legal sources or the necessary advice of a legal expert, where appropriate. All informa-
tion in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user, therefore, uses the information at
its sole risk and liability. For the avoidance of all doubts, the European Commission has
no liability in respect of this document, which is merely representing the authors’ view.

http://www.max-centre.eu 2

http://www.max-centre.eu
http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Contents

Executive Summary 4

1 Introduction 7
1.1 Milestones . 8

2 Task 1: Portability and single node performance 9
2.1 An abstraction layer for portability: DeviceXlib 11
2.2 BIGDFT . 12
2.3 FLEUR . 14
2.4 QUANTUM ESPRESSO . 14
2.5 SIESTA . 17
2.6 YAMBO . 18

3 Task 2: Parallel efficiency 19
3.1 BIGDFT . 20
3.2 FLEUR . 22
3.3 QUANTUM ESPRESSO . 23
3.4 SIESTA . 25
3.5 YAMBO . 26

4 Task 3: Maintenance, sustainability and deployment 28

5 Task 4: Interoperability and exascale workflows 29
5.1 New property calculators and capability enhancement 29

5.1.1 Quantum ESPRESSO . 29
5.1.2 Siesta . 30
5.1.3 BigDFT . 30
5.1.4 Fleur . 31
5.1.5 Yambo . 31

5.2 Interoperability hooks, system interfaces, and other measures to enable
workflows. 32

6 Conclusions 34

MAX codes’ resume 34

References 40

http://www.max-centre.eu 3

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Executive Summary

This report describes the main developments that will be performed on the MAX codes
–BIGDFT, FLEUR, QUANTUM ESPRESSO, SIESTA, and YAMBO– to extend their
portability, improve their efficiency and scalability, streamline their deployment and main-
tenance, enable selected new features and a common MAX interoperability layer. The
final objective of this work is to make the codes able to operate at full efficiency on
pre-exascale and exascale machines and to pave the way for the realisation of the MAX
Lighthouse applications that will be deployed on the EuroHPC clusters. We have struc-
tured the four year work-plan into three main stages:

• The initial phase will address all preliminary work needed to ensure the availability
of stable and efficient production versions of the codes and develop a software
engineering framework to streamline the development activities. We will reach
these objectives with the M12 release. We will realise proofs-of-concept, testing,
and early deployment solutions for specific machines and architectures. The output
of this work will serve as a base for preparing the D1.3 deliverable at M18, which
will update this Software Development Plan and conclude the initial phase.

• In the second stage, we will implement the core part of our plan, which, at least
as test/beta features, will be part of the M30 release, representing the second mile-
stone of our work plan.

• In the final stage, we will work on the finalisation of our plan, improving code
robustness and resilience, and inserting the improvements and technical solutions
indicated by the other work packages: WP2 for what concerns the Lighthouse
applications and the interoperability, and WP3 and WP4 for fine-tuning and op-
timisation of our codes and libraries in the different platforms of interest. These
outcomes and the Lighthouse application apparel will be delivered with the M48
release.

The activities in the plan have been collected into four Tasks with the following goals:

T1.1 Extend portability and enhance single-node performance. This task will extend
the GPU support to all devices, toolchains, and architectures of interest for the Eu-
roHPC program (including NVIDIA, AMD, and Intel hardware). Different code
groups will follow different paths consistent with the specific code features, con-
verging towards a unified implementation model at the end of the project. QUAN-
TUM ESPRESSO and FLEUR will directly implement the offloading using either
openACC or openMP APIs, keeping the two implementations as close as possi-
ble. The YAMBO group will work on enhancing and extending the DeviceXlib
APIs (jointly with OpenACC and OpenMP) and will use the extended APIs to re-
alise an architecture-agnostic implementation. The SIESTA and BIGDFT groups
will focus on the computational libraries, experimenting, integrating, and in some
cases developing computational libraries able to support ROCm, HIP and oneAPI
back-ends. In particular, about this last point, BIGDFT will work directly at tran-
sitioning its computational CUDA libraries to the SYCL programming model using
Intel’s DPC++ toolchain.

http://www.max-centre.eu 4

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

We will also work on other aspects concerning portability and performance porta-
bility. We will complete the acceleration of all the code parts of our quantum
engines and add GPU support to all the property calculators and post-processing
utilities.

T1.2 Improve the parallel efficiency. The MAX codes already feature effective MPI
parallelisation schemes that, in non-accelerated architecture, may scale up to sev-
eral thousands of ranks and that, thanks to the accelerators, obtain significantly
better performance in heterogeneous nodes with a much smaller number of ranks.
Within MAX phase-3, one of our main goals is to increase the parallel efficiency
of our Lighthouse applications to several thousand GPUs. Different measures have
been devised to achieve this goal, depending on the code. A broad categorisation
of these measures includes:

– refactoring and optimising the communications and synchronisation in the
lower parallelisation levels;

– reducing the memory footprint on the device memory to enable extensive
usage of the auxiliary parallelisation levels;

– implementing dynamical work distribution to remove work imbalances.

In many cases, appropriate parallel libraries will be crucial to achieve the desired
parallel performance. As a situation common to all MAX codes, this will be done
in particular for the case of GPU-aware parallel linear algebra.

T1.3 Enhance maintenance, sustainability, and deployment. This task implements
the necessary instruments for integrating and deploying the outcomes of our devel-
opment activity into the EuroHPC ecosystem. The main points of this action will
address:

– Automated build systems based on autotools or CMake to support all
new platforms and features

– Meta-programming, templating and auto-formatting tools and procedures to
maintain a unified code base for CPU and GPU accelerated versions of the
codes.

– Recipes for package managers for all MAX codes, with support for at least
Spack and/or EasyBuild.

– A testing apparatus to ensure continuous integration and to monitor possible
regressions.

– Environment managers, containers, and other automatised deployment tools.

T1.4 Implement interoperability hooks and new property calculators for the Light-
house applications. In this task, we have collected all those implementations more
directly connected with realising the Lighthouse applications. These actions will
be of two main kinds. One more general and common to all the codes consists of
implementing the interoperability hooks designed in WP2 to streamline the data
exchange and the interaction of the codes during the execution of the scientific
workflows. These hooks will permit the workflow manager to check the status

http://www.max-centre.eu 5

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

of each of its components, recover possible check-pointing data, and move large
amounts of data between the different applications. In the first stage, the codes
group will start some pilot implementations, such as the one of the data exchange
between the phonon code of QUANTUM ESPRESSO and YAMBO. These pi-
lot implementations will serve as guidelines for the design of the interoperability
layer. The details on these interoperability hooks and further interoperability fea-
tures will then be delivered, within WP2, in the project’s second year and delivered
with the M30 releases.

The other type of action is more specific. It consists of implementing the new
property calculators that will be needed in order to perform the specific tasks of
each code inside the scientific workflows.

The plan summarised above will be a starting map for orienting the first stage of
the implementation and facilitating interaction with other WPs. More precise details on
several points of the implementation plan will be decided on top of the output of the first
exploratory phase and leveraging that of WP2 for what concerns the data exchange and
the interoperability hooks, that of WP3 for what concerns the technical solutions to adopt
for the single and parallel performance and for implementing the software engineering
framework of Task 3. Interaction with WP4 will help to explore new and alternative HPC
architectures that have not been considered in the first version of our plan.

http://www.max-centre.eu 6

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

1 Introduction

The main goal of the third phase of the MAX CoE is to deploy several applications, based
on the CoE flagship codes, on the pre- and exascale machines of the EuroHPC program.
Such applications will exploit the computing power of these clusters to solve outstanding
scientific problems, reaching, thanks to the newly available computing power, scales and
accuracy that have been unfeasible up to now.

Since these applications aim at identifying and exploiting the potentialities of the ex-
ascale machines and at devising and implementing methods, techniques, and best prac-
tices, we have followed the wording of the EuroHPC call referring to them as Lighthouse
applications in the rest of the text. Some will be directly derived from the current MAX
codes and work as a monolithic distributed application. Other Lighthouse applications
will instead combine several exascale blocks that will have to be executed concurrently
to perform complex workflows whose combined execution has been barren out by the
computational cost of some of its components.

The MAX flagship codes are QUANTUM ESPRESSO, SIESTA, FLEUR, BIGDFT,
and YAMBO, which were already targeted by previous phases of the MAX CoE. For
each code, a summary box is reported at the end of this document describing the main
scientific methods and target systems, some technical aspects, and the performance in the
HPC environment.

This report describes the necessary measures to be implemented in the MAX codes
that WP1 carries out to accomplish the above goals. Apart from realising the Lighthouse
applications, these measures also aim at enabling the MAX codes to efficiently use all
computing architectures of interest for the EuroHPC ecosystem. In the same way, the
part of the work planned to support the exascale workflows will be done in concert with
WP2 to improve interoperability with workflow managers.

Work-Package 1 is organised into 4 Tasks, which aim at:

• Ensuring optimal portability and performance on all architectures of interest.

• Improving and, where necessary, refactoring the distribution of data and computa-
tion over many nodes to optimise the parallel efficiency, particularly in the case of
GPU-based heterogeneous machines achieving a many-node performance compa-
rable to that obtained on single nodes.

• Adopting the necessary software-engineering measures to ensure sustainable de-
ployment, maintenance and development on different systems.

• Implementing new features, communications hooks and robustness measures nec-
essary for the codes to perform the Lighthouse applications and exascale workflows
in general.

This document is organised as follows: in Section 1.1 we define the milestones of
our program and the timelines for the specific actions to be performed on the codes.
The following four Sections analyse the main problems related to each of the four Tasks
described above and the solutions we intend to implement; Section 6 discusses the ques-
tions this first report leaves open and in an exploratory phase. As will be apparent by the
content of these sections, many decisions and details of our developments will eventually
depend on the outcomes of the other work packages; for example, all the preparatory

http://www.max-centre.eu 7

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

work for the implementation of the scientific workflow presented in Section 5.1 will be
fine-tuned thanks to the earlier experimentation done in WP2. The technical challenges
about portability, performance, and scalability discussed in Sections 2 and 3 are currently
also analysed in WP3 and WP4 in close collaboration with this work package. The re-
sults of these interactions and further necessary updates will be constantly reported in
the project’s continuous reporting documents and delivered in the following scheduled
reports and, in particular, in the report of M18 that should represent the final update of
this plan.

1.1 Milestones

The whole WP1 development plan spans four years of work that will be carried out within
the five distinct code packages corresponding to the MAX flagship codes, building to
an overall code base of many hundred thousand lines of Fortran. Another significant
part of the work will be aimed at integrating workflows, queue managers and external
libraries into the final Lighthouse applications. Given the extent of the plans presented
in this document, the timeline provided here is, for many aspects, still only indicative,
especially concerning the actions scheduled after M18-24. The timeline will be updated
and integrated with the successive reports of the WP1 group. In particular, an update
and critical revision of the software development plan will be presented at M18 with a
dedicated deliverable.

The three major releases scheduled as deliverables of the MAX project constitute
the main milestones in our road map. While we will be able to include in the commu-
nity releases only those implementations that are production-ready, other intermediate
objectives will be associated with the milestones and released via development or beta
branches.

The first release, scheduled at M12, will mainly focus on performance and perfor-
mance portability, interoperability, and the continuous integration and deployment of the
MAX codes in the EuroHPC ecosystem. By that time, a software engineering frame-
work enabling the sustainable maintenance of our codes will be in place and constantly
upgraded and improved with the project’s progress. These latest achievements will be
instrumental for the next set of developments, mainly focused on parallel efficiency and
implementing new features, bringing to the second major release at M30.

At this stage, we will have completed all the necessary measures to allow our codes
to operate efficiently on exascale machines, performing monolithic calculations and op-
erating concurrently within the target scientific workflows. To reach this milestone, it
will be necessary to complete the planned parallel efficiency/joint-throughput improve-
ments and implement the necessary property calculators and interoperability hooks. In
the programme’s last phase, the effort will mainly concentrate on the final realisation
of the Lighthouse applications and their deployment and demonstration on the targeted
exascale clusters. In this period, we will also work on integrating the technical solu-
tions for inter-node communications and extreme data exchange that will be designed
and implemented in WP2 and WP3.

http://www.max-centre.eu 8

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

2 Task 1: Portability and single node performance

This task aims at realising a starting base of the MAX codes that can run efficiently on
all platforms of interest for the EuroHPC network. As such, it gathers the work done by
the MAX CoE to adapt its flagship codes to heterogeneous architectures and implement
a portable, architecture-agnostic performance model. The main measures adopted up to
now to achieve this target have been (i) the complete encapsulation of GPU offloading
thanks to architecture-specific libraries, and (ii) the direct transposition on GPU of the
basic MPI parallelisation and data distribution schemes.

The first concept was instrumental for all codes and has been adopted extensively.
This has been particularly fruitful for offloading large linear algebra problems and, for
some codes (e.g. SIESTA, BigDFT), sufficient to achieve significant performance on
heterogeneous nodes. Instead, the second concept has been crucial for those codes in
which the data and computation distribution is more pervasive. However, as we will see
in the next Sections, it has been found that the simple direct transposition of the basal MPI
parallelisation schemes, albeit successful, may limit the scalability over many thousands
of ranks due to communication and synchronisation overheads. Measures to mitigate and
overcome such limitations have been collected in Task 2.

As for this task, we are working on several distinct lines:

• Expanding the support to all devices, tool-chains, and architectures of interest
for the EuroHPC ecosystem.

• General improvement of the offloading strategy based on library encapsulation,
by optimising the initialisation, interfaces, and data transfer and adding support for
alternative libraries.

• Improvement and reorganisation of the offloading in the high-level parts of the
codes by removing the duplication of functions and variables, phasing out CUDA-
Fortran and developing and further adopting the DeviceXlib abstraction layer.

• Acceleration of the residual computational kernels whose offloading was post-
poned because of their relatively low computational cost.

Most of the effort in the Task will likely be concentrated on the first point. The
production versions of the MAX flagship codes currently support NVIDIA GPU cards
using specific libraries and, when needed, explicit offloading via CUDA-Fortran and/or
openACC programming models. The work to support other cards and architectures while
following the same path will first require some adaptation to the different vendor-specific
software stacks and, in a second phase, a work of abstraction from vendor-specific details
to keep our high-level code source architecture agnostic.

In this respect, we will work on siding the CUDA-library back-ends with those for
HIP and ROCm libraries for AMD cards and OneMKL for Intel GPUs. In some cases,
Fortran support for such libraries and runtime APIs is still not mature enough, and addi-
tional effort is needed to bind directly to C APIs via the native C-Fortran compatibility
layer. At a lower level, supporting different architectures involves, instead, either the test-
ing and adoption of the analogous appropriate computation libraries for such systems, the
development of such libraries with portable C++ programming models such as SYCL, or
the addition of the openMP offloading model to the Fortran library code.

http://www.max-centre.eu 9

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

The code porting and abstraction refactoring have been scheduled differently in the
MAX flagship codes. For example, the QUANTUM ESPRESSO group has prioritised the
openMP offloading, working in a separate earlier-deployment branch where the openMP
directives are introduced beside the openACC ones. This work proceeds concurrently
with work done on the main branch, where the CUDA-Fortran is gradually replaced
with openACC. Instead, the YAMBO group works at the DeviceXlib abstract APIs,
progressively adopting them and directly realising a platform-agnostic offloading.

The work of these two groups is planned to converge towards a common program-
ming model that, leveraging the DeviceXlib APIs, will pave the way to implementing
a common strategy for unifying the code base with openMP, openACC, and CUDA-
Fortran support. Such convergence has been made possible by the joint selection of the
GPU offloading operations performed at a high level and by defining the functionally and
formally similar constructs used to perform them. DeviceXlibAPIs will abstract these
operations, reducing the code verbosity and simplifying the structure of the pre-processor
flags.

One of the first outputs of this programme is expected to be the pw.x quantum-
engine of QUANTUM ESPRESSO, with a production-ready version to be deployed on
LUMI-G by M12. Nevertheless, the final definition of the overall strategy and its adop-
tion plan will be presented in more detail in the D1.3 report at M18. The final goal of this
effort is to deploy MAX codes on heterogeneous nodes equipped with AMD and Intel
GPU devices and the possibility to use different toolchains in all accelerated architec-
tures.

Regarding the library encapsulation, the actions related to the interfacing with accel-
erated solvers, matrix manipulation, utilities and GPU-aware MPI libraries will involve
all the codes. In many cases, numerical libraries act as the back-end of computational
intensive kernels, and optimised interfaces and efficient data offloading – done with
CUDA-Fortran, openACC, openMP, runtime APIs or with a general abstraction layer
such as the one provided by DeviceXlib – are instrumental in streamlining the host-
device data movement and reducing the library initialisation overhead. An example is
the work planned for QUANTUM ESPRESSO (see Sec. 2.4) for generalising and adapt-
ing the 3D-FFT interfaces. Other activities planned for this point include developing or
adopting new libraries: for instance, the new SYCL-based Poisson solver in BIGDFT
and the accelerated FFT kernel in YAMBO.

The third point involves mainly those high-level code parts where it has been nec-
essary to access and operate on data allocated on the accelerator memory. A significant
effort is planned by the QUANTUM ESPRESSO group to remove all CUDA-Fortran con-
structs at the high-level part of the suite and replace them with less invasive openACC
offloading directives. The YAMBO team will possibly follow a similar path. As we have
seen above, such action is necessary in order to add the openMP offloading and to adopt
the new DeviceXlib APIs.

The fourth action point of this Task is instead dedicated to the extension of the of-
floading within the MAX codes to reduce the non-ported parts of the codes further,
thereby reducing the occurrence of possible bottlenecks. For example, the SIESTA
group has planned the re-implementation of some parts of the code that currently use
sparse-data algorithms, trading lower space complexity for new acceleration possibili-
ties and the adoption of accelerated kernels for the Poisson solver and the exchange-

http://www.max-centre.eu 10

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

correlation calculations. Similarly, the QUANTUM ESPRESSO group plans to enable
GPU usage in all the linear response parts of the suite. The openACC offloading support
should be carried out for the M12 milestone, while full-fledged multiplatform/multimodel
support is scheduled for the M30 milestone.

The rest of the section is organised into subsections where we first discuss the work
on DeviceXlib, and then the porting of each of the Lighthouse codes in more detail.

2.1 An abstraction layer for portability: DeviceXlib

In this section, we sketch the development plan and objectives for DeviceXlib, as
a tool to hide and abstract GPU-oriented instructions. At present, the library supports
multiple programming models (CUDA-Fortran, OpenACC, and OpenMP-GPU), com-
bined with different linear algebra libraries (Blas/Lpapack, cuBLAS, cuSOLVER, MKL,
RocBLAS), eventually aimed at different GPU hardware and brands (covering at least
NVIDIA, INTEL, and AMD GPUs).

• Further integration of different programming models, runtime, libraries. We
will implement a common abstraction layer and APIs designed to be as indepen-
dent of the underlying layers as possible. Work is planned in particular for the
CUDA-F, OpenACC, and OpenMP-GPU support currently at different maturity
levels, and that needs to be made more homogeneous and mature to be interfaced
with the new APIs.

• Extended linear algebra support. DeviceXlib provides wrappers for common
linear algebra (LA) functionality on GPUs (such as BLAS and LAPACK routines).
The coverage is limited to a few operations largely used within MaX codes. The
goal is to support more LA operations and subroutines without being extensive,
providing an abstract set of wrappers.

• FFT on GPUs. Wrappers for FFTs with GPU awareness have been identified
as a relevant extension to be included in DeviceXlib. FFT is pervasive in MaX
codes and requires the support of multiple libraries (cuFFT, MKL, rocFFT, at least)
when aiming at different GPU brands. Therefore, FFTs represent a clear extension
target for DeviceXlib.

• Extended support of custom kernels. By design, DeviceXlib provides ab-
stract APIs for several custom kernels not covered by standard LA libraries, with
examples ranging from remapping vector indexes to evaluating specific matrix el-
ements. DeviceXlib does not aim at covering all possible kernels encountered
in MAX codes, which would be not possible and not meaningful, but rather to pro-
vide a set of common kernels that could be called via a subroutine (with automatic
support of multiple GPU accelerators) rather than having it explicit in the main
code base. Extending the set of covered kernels goes along with developing MAX
codes and is a planned activity within MAX phase-3.

• Support for integration in MAX codes. While DeviceXlib is mainly co-
developed within the YAMBO and QUANTUM ESPRESSO communities with the
help of HPC centres and HW vendors, the effort will be put in place to support
the needs of and ease the integration with other MAX codes. One of the main

http://www.max-centre.eu 11

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

advantages of having an in-house developed portability library is the flexibility
in accommodating needs and steering developments according to the community
needs. In this respect, MAX has a critical mass large enough to support and
steer DeviceXlib development and integration. A few extra electronic structure
codes external to MAX have already started discussions about possibly adopting
DeviceXlib, which will be supported compatibly with the available PM effort.

2.2 BIGDFT

As a massively parallelised DFT code, BigDFT has been GPU enabled since 2009, utilis-
ing the NVIDIA CUDA language. One year later, this functionality has been extended to
the usage of the OpenCL standard, developed by the Khronos group, to enable the multi-
platform application of the wavelets convolution kernels used by the code. Such a GPU
acceleration has then been employed in the acceleration of the Fock operator calculations
with the intensive usage of cuFFT calls in the Interpolating Scaling Function Poisson
Solver kernel. In particular, the expensive evaluation of the exact exchange operator re-
quired in the cubic-scaling PBE0 approximation can be offloaded to GPUs to decrease
the time-to-solution of hybrid functionals and, consequently, to achieve computing times
which are competitive to the less accurate PBE approximation. Clearly, CUDA only
allows for offloading to NVIDIA GPUs, which is no longer sufficient considering the
usage of other companies’ GPGPUs (e.g. AMD’s Instinct series and Intel’s Max Series)
in several of the fastest supercomputers in the world. 1

There are several cross-platform alternatives to CUDA for the development of hetero-
geneous codes. For example, OpenMP (with offload capabilities as defined in the OMP
5 standard), OpenACC, OpenCL, and SYCL. The latter is an open standard developed
by the Khronos group, released in 2014 to enable cross-platform code development for
heterogeneous processors in C++. There are several implementations of SYCL, most no-
tably Intel’s DPC++ (part of Intel’s OneAPI suite), Codeplay’s computecpp and Open
SYCL. The present developments around the BigDFT code focus on Intel’s DPC++ im-
plementation of SYCL for accelerating the Fock operator on multi-platform architectures.

SYCL has several advantages compared to the above-mentioned alternatives. First,
SYCL code can be used to run computations in parallel on the CPU, as well as to offload
the computations to accelerators (most notable GPUs from AMD, Intel, and NVIDIA),
which may result in fewer code paths, thereby reducing the amount of code which has
to be maintained. Second, SYCL is a high-level single-source language following the
C++ standard minimising the development effort compared to e.g. OpenCL. Third, the
performance of SYCL implementations is, in general, highly competitive.

Finally, due to the similarities between CUDA and SYCL (cf. Figure 1), the migra-
tion from existing CUDA code is straightforward. In particular, Figure 1 was automati-
cally generated by Intel’s DPC++ compatibility tool, which allows for a quick migration
of CUDA code to SYCL code, although with the downside that an additional DPCT in-
terface layer is often added, which may result in sub-optimal code. We plan to extend the
SYCL implementation of BigDFT based on the automated translation from the DPCT
tool which was manually cleaned and optimised to achieve the best performance.

The future guidelines of BigDFT developer groups will therefore be based on such
1See e.g. https://www.top500.org/lists/top500/2023/06/

http://www.max-centre.eu 12

https://www.top500.org/lists/top500/2023/06/
http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

1 //CUDA
2 __global__ void post_computation_kernel(int nx, int ny, int nz,

double *rho, double *data1, int shift1, double *data2, int
shift2, double hfac)

↪→

↪→

3 {
4 int tj = threadIdx.x;
5 int td = blockDim.x;
6 int blockData = (nx*ny*nz) / (gridDim.x*gridDim.y);
7 int jj = (blockIdx.y*gridDim.x + blockIdx.x)*blockData;
8

9 for (int k=0; k<blockData/td; k++) {
10 int idx = jj + tj + k*td;
11 data1[idx+shift1] = data1[idx+shift1] +

hfac*rho[idx]*data2[idx+shift2];↪→

12 }
13 }
14

15

16 //SYCL
17 void post_computation_kernel(int nx, int ny, int nz, double

*rho, double *data1, int shift1, double *data2, int shift2,
double hfac, const sycl::nd_item<3> &item)

↪→

↪→

18 {
19 int tj = item.get_local_id(2);
20 int td = item.get_local_range(2);
21 int blockData = (nx*ny*nz) /

(item.get_group_range(2)*item.get_group_range(1));↪→

22 int jj = (item.get_group(1)*item.get_group_range(2) +
item.get_group(2))*blockData;↪→

23

24 for (int k=0; k<blockData/td; k++) {
25 int idx = jj + tj + k*td;
26 data1[idx+shift1] = data1[idx+shift1] +

hfac*rho[idx]*data2[idx+shift2];↪→

27 }
28 }

Figure 1: Example of one of the BigDFT CUDA kernels compared to the SYCL equiv-
alent. The SYCL code was automatically generated using Intel ® DPC++ Compatibility
Tool version 2023.1.0. Note that there is a simpler version of the above SYCL code.

http://www.max-centre.eu 13

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

a blueprint, where we will inspect the optimal sources of optimisation in view of (i) ex-
tending the FUTILE library API to include in the same structures CUDA and SYCL calls
to accelerated kernels, thereby enhancing the readability of the host code, (ii) measur-
ing the performance figures on the basis of the percentage of the total bandwidth of the
node, (iii) providing a fully portable programming paradigm which has the ambition to
be executed on the present-day and emerging technologies, with limited intrusivity for
the developer and minimal guidelines for the user. We plan to use the Just-In-Time pro-
gramming paradigm (like an underlying OpenCL layer) to explore the portability of the
approach.

2.3 FLEUR

Currently, FLEUR is mainly optimised for two different computing architectures: the
standard Intel/AMD x86 CPU architecture and the NVIDIA GPUs. This was achieved
using OpenMP for multithreading on the CPU and OpenACC for GPU programming.
We plan to extend this by:

• Adaption of further programming models for GPUs. As OpenACC is in prac-
tice only supported by a few compilers to the extent we need, in fact, we so far only
found the NVIDIA HPC compilers aiming at NVIDIA GPUs able to deal with our
code, we plan to extend our code by using, e.g. OpenMP and its offloading fea-
tures. In this process, we also foresee the option to utilise the features implemented
in the DeviceXlib and to create an interface between FLEUR and this library.

• Extended use of standard linear algebra. In the previous years of MAX , we
have already successfully adjusted the algorithms used in several computational
critical kernels to use standard linear algebra operations, which can be used from
highly optimised libraries. We plan to extend this strategy to further parts of the
code, particularly the local orbitals.

• Exploration of calculations with reduced precision. So far, FLEUR uses double-
precision arithmetic throughout the full code base. We will explore if this is re-
quired for all kernels and all properties to be calculated. We expect that reducing
the precision can be tolerated for some workloads and thus lead to increased single-
node performance.

2.4 QUANTUM ESPRESSO

The current production version of QUANTUM ESPRESSO features extensive support
for heterogeneous nodes based on NVIDIA cards and CUDA-based architectures. This
last version, also thanks to the completion of the first actions of this plan, features a
stable and efficient offloading implementation for all the main applications of the suite:
Quantum engines –pw.x and cp.x–, Phonon, and TDDFPT applications. We have
started refactoring the CUDA support, removing most CUDA-Fortran parts and replacing
them with less invasive OpenACC APIs and directives. The acceleration of residual
kernels, the post-processing tools and new features will be strictly worked out directly in
OpenACC.

http://www.max-centre.eu 14

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

With a much smaller impact on the source code, the OpenACC offloading approach
presents a structure almost directly reproducible with openMP, the other model that we
will support for offloading. For this reason, this refactoring is a crucial preparatory step
for reaching the combined support of these two offloading models that will enable us to
use all three main types of GPUs currently on the scene (CUDA, AMD, and Intel) and
keep us ready for prompt adaptation to possible future architecture such as RISC-V.

After this initial phase, the work for implementing the support of openMP will take
a large part of the effort in this Task. Such porting is currently distributed in a separate
branch, whose content will be progressively merged with the openACC stable source.
This will happen together with the adoption of the new DeviceXlibAPIs. We organise
the rest of the Section in small paragraphs describing this task converging lines of work
for QUANTUM ESPRESSO.

Refactoring and extension of CUDA offloading. The offloading to NVIDIA accel-
erators is based on three main points. First, the support and usage of several tailored,
vendor-specific numerical libraries by our computational libraries. For example, cuFFT
in FFTXlib, cuSOLVER in LAXlib, the more ubiquitous cuBLAS are accessed by
the APIs in UtiliXlib and, for the future, via DeviceXlib new interfaces. As these
libraries work on device data, the second component of the implementation is the host-
device data mapping and the device data management with capabilities for slicing and
transposing the data. This second component is also necessary for high-level code out-
side the numerical libraries. The third component is using advanced APIs to convert the
compute-intensive parallelisable loops into accelerated kernels.

In the first versions of the QUANTUM ESPRESSO suite, all these GPU-related op-
erations were implemented using the CUDA Fortran language extension. This choice,
albeit efficient, strongly increased the maintenance burden because the CUDA-Fortran
extension requires explicit name-space duplication for the mapped data, thus duplicating
many routines. As the first part of this program, we have gradually moved to the less
invasive usage of OpenACC directives and APIs. The OpenACC directives also have
the other strong advantage of being conceptually similar to the OpenMP5 directives,
thus leading to similar final code structures. This simplifies the future porting of the
QUANTUM ESPRESSO suite to AMD and Intel GPUs, as described in the following
paragraphs.

We are keeping the CUDA Fortran APIs in those cases where the name-space
duplication brings clear advantages. For example, in the case of Fortran interfaces, ar-
guments with the device attribute can be used to resolve at compile time the CPU or
GPU implementation of the same interface. In this sense, OpenACC/CUDA Fortran
interoperability has been extensively exploited for handling the device data structures in
the respective parts of the code.

As the refactoring proceeds, the QUANTUM ESPRESSO code is becoming increas-
ingly being structured in a three-layered scheme:

1. An upper layer of code where the GPU managing is based on OpenACC directives,
where it is possible to develop new code with a very limited effort spent in handling
GPU directives;

2. A middle layer of code, mostly hidden in modules and interfaces, where OpenACC

http://www.max-centre.eu 15

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

and CUDA-Fortran interoperability is used, whose main function is to prepare
data for the most intensive computational steps;

3. A deep layer of code, mostly based on vendor-specific numerical libraries, strongly
depending on the specific hardware.

Noticeably, this structure – inspired by the MAX separation of concerns philosophy–
is very flexible and constitutes an ideal background for the future integration of OpenMP
directives. Furthermore, we expect that the use of the DeviceXLib library will fur-
ther simplify the upper and middle layers of the code, especially when the branches with
NVIDIA and AMD/Intel offloading will be merged, and OpenACC and OpenMP direc-
tives will overlap.

Implentation of OpenMP offloading. Together with the openACC APIs’ adoption,
we have also planned the support of OpenMP target APIs so to ensure the portability
on GPU architectures (such as AMD and Intel), whose support for OpenACC is less
mature or even absent. The plans for these developments leverage former collaborations
with Intel experts, such as the hackathon organised by Intel in May 2022 to integrate an
OpenMP accelerated version of FFTXlib into pw.x. To avoid conflicts, the openMP
porting developments are collected on a separate branch that proceeds in parallel with the
OpenACC-CUDA-Fortran refactoring.

In contrast with the openACC + CUDA-Fortran approach, when using OpenMP we
cannot resolve the GPU-specific implementation leveraging the device type for argu-
ments. We plan to implement a fully consistent compile-time resolution mechanism
based on the openMP directives variant and dispatch. This mechanism will be
crucial for an effectively agnostic adoption of the different vendor-specific numerical li-
braries, also because these will be different for AMD –with the ROCm and HIP back-end–
and Intel –with the oneAPI back-end. At variance with the openACC branch, where
we operate the incremental refactoring on a fully effective implementation, the progress
on the openMP branch is characterised by the gradual addition of accelerated code parts
and a consequent increase in code performance.

The first achievement of this effort has been offloading the main computational core
for both norm-conserving and ultra-soft pseudo-potentials, thereby covering a wide range
of systems for production. Efficient communications for AMD and Intel GPU architec-
tures have been integrated by enabling and testing GPU-aware MPI protocols. Profiling
capabilities and code instrumentation with AMD tools (rocprof and roctracer)
have been added to the internal QE timers.

These achievements will be instrumental for the work up to the next milestone at
(M12) when we plan to deploy a production-ready version of pw.x on the LUMI-G par-
tition. To this end, the offload will be extended to the initialisation and finalisation of
PWSCF, and the locality of global variables on the GPU will be increased with unstruc-
tured data mapping. The plan further envisages the implementation of an accelerated
asynchronous FFTs algorithm in the OpenMP version and the offload of LDA+U calcu-
lations for strongly-correlated systems.

After having prioritised the earlier deployment for AMD and Intel architecture, the
next steps in the openMP porting will target the unification of the code base, preparing
the merge of the openMP version into the main development branch. At the M30 mile-

http://www.max-centre.eu 16

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

stone, QUANTUM ESPRESSO will feature a well-established and field-tested unique
code-base available for deployment for all GPU architectures that support the openMP
offloading.

Low level libraries. The performance portability of QUANTUM ESPRESSO is rooted
in the lower-level computational libraries (first and foremost FFTXlib and LAXlib),
and a consistent part of the portability work of this plan is targeted at ensuring their
support to all necessary back-ends, and at enhancing and streamlining their interfaces.
For what concerns FFTXlib, the support for NVIDIA cards is provided by the CUDA-
Fortran implementation. The openMP offloaded version supports instead the AMD and
Intel cards. This version has been developed in collaboration with Intel and AMD devel-
opers.

The first target of the actions concerning FFTXlib is the performance optimisation
of the openMP version. One crucial point will be the implementation of the batched
mode execution on many wave functions to exploit the throughput capability of the cards
better and reduce the data movement overhead by overlapping calculation and commu-
nication. This will be done in openMP using task parallelism to match the performance
obtained by the NVIDIA counterpart based on asynchronous streams. Another planned
effort concerns the refactoring of the library interface with the twofold aim of streamlin-
ing the usage of the library by wrapping up the necessary data transposition and removing
any reference of the specific back-end from the high-level code base. Such abstraction
will also be instrumental in implementing the automatic choice of specific optimisation
parameters on different machines and architectures.

The porting of the LAXlib library for the linear algebra will rely on rocSolver and
oneMKL (for AMD and Intel architectures, respectively) as backend libraries for se-
rial accelerated diagonalisation, in analogy with cuSolver for NVIDIA. In the second
stage, the incorporation of a distributed linear algebra library will be studied to deal with
large matrices (10k×10k at most) and to optimise their memory distribution. The main
LAXlib calls will be encapsulated by means of wrappers similar to those of FFTXlib.

The OpenMP offloading of other low-level libraries, such as upflib and XClib,
will strictly follow the scheme adopted for the OpenACC model, thereby allowing for
both internal and external offloading of the input/output data, depending on the developer
choice. The external library LibXC will be supported in all cases, but with no offloading
while waiting for future developments on its portability.

2.5 SIESTA

The acceleration of the solver stage (the most time-consuming section in a typical exe-
cution of SIESTA) is achieved through the use of properly accelerated external libraries.
For diagonalisation, we use ELPA, both with a native interface and through the ELSI
library-of-solvers interface (which implements further DFT-specific sections of the solver
stage). The ELPA library is a strategic asset of a number of high-profile projects (includ-
ing among the CoEs not only MAX but also Nomad), and is in very active development
to support new architectures. It has recently added support for AMD GPUs and SVE
vector instructions, and kernels for the upcoming Intel GPUs are in development.

We have recently refactored the original linear-scaling solver to use the DBCSR li-
brary as a back-end. This library also offers GPU support. The PEXSI solver (see

http://www.max-centre.eu 17

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Sect. 3.4) does not currently have a released GPU-enabled version, but their developers
have done some work in that direction.

In SIESTA we plan to:

• Continuously monitor the porting of solver libraries to new architectures.

• Integrate interfaces to support the new architectures.

• Extend the internal use of ELPA to other sections of the code, particularly those
related to analysis tools (band structures, density of states, projections, etc).

In SIESTA, the non-solver parts of the code (like the setup of the Hamiltonian) are
mostly linear-scaling, as they involve sparse data structures thanks to the finite support
of the basis orbitals. But this very sparsity is a problem for acceleration: the typical
idiom to walk through the data structures involves indirection in the form of index arrays,
destroying the opportunities for streaming in accelerators. Depending on problem size
and machine characteristics, it might pay to select a code path in which the underlying
algorithm has been changed from sparse to dense. The balance between the low memory
use and small operation count of the sparse algorithm and the high-throughput of the
dense one can tip in the latter’s favour in some circumstances (in particular, when time-
to-solution is paramount).

We will explore these alternative algorithms, beginning with the easiest targets (e.g.,
building of the density matrix from eigenvectors; computation of the (projected) density
of states), and progressing to more complex ones (e.g. the computation of the charge
density on the grid). The expectation is that the dense algorithms can be cast in the form
of calls to accelerated dense linear-algebra routines, and that they can be deployed on
different architectures using techniques for transparent offloading, as described in the
DeviceXlib section of this report. The TranSiesta module can also benefit from
this kind of algorithm re-implementation to accelerate some of its kernels.

2.6 YAMBO

In the following, we list the main development actions planned for the YAMBO code
within the scope of T1.1.

• Full integration of DeviceXlib. While DeviceXlibis already in use in YAMBO,
the library has undergone a large refactoring, with the further abstraction of the ex-
posed APIs and the addition of new functionality, together with the newly available
support of OpenACC and OpenMP. In this respect, part of the effort in exploiting
the OpenACC and OpenMP programming models within YAMBO (see below) is
also devoted to supporting the refactored version of DeviceXlib, with full inte-
gration of the library within the YAMBO code base.

• Full support of OpenACC and OpenMP-GPU programming models. The CUDA-
Fortran porting of YAMBO is almost complete for the main parts of the code (e.g.
screening, GW, and BSE). It may need further refinement, and porting for most
advanced features (e.g. real-time, electron-phonon, etc ...). The main task to be ac-
complished is the completion and optimisation of the OpenACC (already ongoing)
and OpenMP-GPU porting, which requires both integration with DeviceXlib

http://www.max-centre.eu 18

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

as well as explicit support of OpenACC and OpenMP kernels with the main code-
base. Importantly, this has to be done without duplicating the source (a strict re-
quirement) and by keeping the source code as readable as possible to keep the
community engaged.

• Benchmarking and profiling. Different porting solutions will be implemented
and field tested, especially on GPU-accelerated architectures and targeting Eu-
roHPC machines. Importantly, these actions also include comparing different
programming models, such as CUDA-Fortran versus OpenACC (but also against
OpenMP-GPU, when ready), to clarify whether all models are really needed (per-
formance and portability-wise). For instance, CUDA-Fortran will be removed
when equally functional but less disruptive OpenACC constructs are available for
NVIDIA GPUs.

• Testing and optimisations aimed at many-core architectures. Activities (e.g.
loop rearrangement for vectorisation) will be targeted with particular emphasis on
ARM-SVE, in view of the release of SiPearl Rhea, AWS Graviton 3 and deploy-
ment on EUPEX & The EU pilot for exascale cluster prototypes. Regarding sched-
ule, these activities will have a larger weight in the second half of MAX phase-3.

3 Task 2: Parallel efficiency

This task collects all those coding activities aimed at stepping up the scalability of the
MAX codes in order to make them able to exploit efficiently up to several thousand
GPUs. MAX codes are, in fact, efficient parallel codes with a demonstrated capability
to scale on homogeneous nodes up to several thousand MPI ranks by adopting multiple
levels of parallelism.

As seen in Section 2, transposing the lower parallelism level into the accelerators is a
straightforward strategy that allows for a quick and efficient adaptation to heterogeneous
nodes. As a result, the times to solution are systematically shorter than those obtained
with homogeneous nodes. The basal parallel groups reach the best performance with a
significantly smaller number of nodes, and the consequent reduction of communication
makes it easier to increase the auxiliary parallelisation throughput.

This task will cope with the technical difficulties such approaches present when ex-
tended up to several thousand MPI ranks and GPUs. One of the main technical issues is
the impact on the GPU-node efficiency of communication and synchronisation. To over-
come or mitigate this issue, we will work with WP3 experts to devise and experiment
with different technical solutions, such as the adoption of point-to-point communications
between GPUs, the use of architecture-specific communication libraries, or the imple-
mentation of fine-tuned batching of computations in the accelerators to minimise the
impact of synchronisation on the GPU throughput. The plan also includes the implemen-
tation of alternative workload distributions devised to avoid splitting the individual tasks
into an exceeding number of subtasks.

Another possible significant limitation of the current implementations is the use of
one-to-one replicas of the host data structures. This causes an unnecessarily large mem-
ory footprint which may pose a bound on the size of systems that can be simulated. In
this respect, forcing the distribution of the data structure over a larger number of GPUs

http://www.max-centre.eu 19

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

may worsen the communication issues and hinder the usage of the auxiliary parallelisa-
tion levels. To mitigate these issues avoiding significant performance impairments, we
have planned actions for increasing the granularity of the offloaded data structures and
accurately fine-tuning the host-device data copies.

For all of these measures, a first period of analysis and experimentation is scheduled
for the first year of activity. The results of this analysis will be reported in WP3 deliver-
ables and for what concerns WP1 actions in the M18 update of the software development
plan.

Another crucial issue for the parallel performance of all the MAX codes is the ca-
pability to operate in joint throughput on very large distributed matrices with the full
range of operations available and well-performing. Being a very general need of HPC
applications, many domain-specific libraries are available. This task will mainly work on
maintaining and expanding the support for the various libraries available. The rest of this
section is organised into specific subsections that will discuss the work on each code in
detail.

3.1 BIGDFT

BigDFT is a wavelet-based density functional theory (DFT) code with two main oper-
ation modes: an approach that scales cubically with the number of atoms and a second
one that is linear scaling (LS). In the LS approach, the total work, divided among MPI
tasks, grows in proportion to the number of atoms, so large core counts are more naturally
accessible to LS-BigDFT than cubic scaling approaches. The overall aims of the forth-
coming work about BigDFT will address the limitations identified in the current MPI
communication scheme it relies on and will improve the performance of its lower-level
OpenMP parallelisation.

In the context of the MAX CoE, the starting point for successfully exploiting the
parallelisation of BigDFT is the weak-scaling limit of the LS algorithm of the code. This
would enable us to identify the resources needed for the calculations in various platforms
and system categories on a per-atom basis. As an illustration, starting with a crystal of
2CzPN containing 1000 molecules (54000 atoms), we extract subsets of various sizes
and launch jobs on the target machine with the desired number of nodes and threads.

For example, we show the performance of BigDFT on the HPE Apollo2000 Gen10
Plus supercomputer located at the Research Center for Computational Science in Okazaki,
Japan. Each node has two AMD EPYC 7763 processes with 128 cores. We used 8 nodes
for each calculation, with 16 MPI tasks and 8 OpenMP threads. The CPU time per atom
is reported in Figure 2. We observe that we quickly reach the linear scaling regime even
with around 1000 atoms.

LS-BigDFT was designed to exploit HPC from the outset, with a long-standing hy-
brid MPI/OpenMP approach. However, it has been several years since the performance of
the low-level OpenMP parallelisation has been assessed, with many of the routines hav-
ing been designed or tested only on low thread counts. Currently, the OpenMP speedup
typically saturates at around 4 threads, leaving scope for improvement for runs using
8-16 threads/MPI. This performance, though, strongly depends on several simulation pa-
rameters. We plan, therefore, to perform a detailed OpenMP profiling of a set of typical
BigDFT runs, resulting in a short list of performance-limiting routines, where there is no
existing OpenMP, or the current OpenMP implementation is inefficient. The OpenMP

http://www.max-centre.eu 20

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Figure 2: Calculation time and memory consumption (per process) of calculations of
2CzPN clusters of increasing size.

http://www.max-centre.eu 21

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

OpenMP Threads 1 2 4 8 16 1 2 4 8 16
Initialisation 1.2 0.9 0.6 0.4 0.4 1.0 1.4 2.1 2.8 3.3

Wavefunction Opt. 16.8 11.8 7.1 4.8 3.8 1.0 1.4 2.4 3.5 4.4
Total 18.1 12.7 7.7 5.3 4.2 1.0 1.4 2.3 3.4 4.3

Table 1: Internal profiling (left) of times and speedups (right) for 10 CBP molecules (620
atoms) on ARCHER2 for LS-BigDFT, using 128 MPI tasks and varying the total number
of cores.

parallelisation for these routines will then be rewritten.
Since the choice of the number of nodes to be used for a given run is often dictated

by memory limitations, not just parallel efficiency, these improvements aim to better
exploit the computing power of new architectures while also increasing the upper limit
in the number of cores which can efficiently be used for a given problem size. The
OpenMP performance depends on several factors, and different routines are affected dif-
ferently. For instance, the initialisation routines show worse speedups than wavefunction
optimisation (see Table 1) and take proportionally more time for fragment calculations,
influencing overall performance. It is, therefore, essential to perform benchmarks for
different setups and system sizes, including LS and fragment, free and periodic boundary
conditions.

Based on the results, the routines with the worst OpenMP performance that take a
noticeable portion of the runtime will be targeted for improvement. The exact details
of changes will depend on the identified routines and may include routines which are
specific to the LS code, as well as those which are shared with cubic scaling BigDFT.
However, changes are expected to include adding OpenMP to routines where it does not
already exist, and changing the scheme used, e.g. replacing uses of OMP section, which
are restricted to 2 threads only, or testing different approaches to thread scheduling.

3.2 FLEUR

The performance of FLEUR relies on several different levels of parallelisation. While
OpenMP/OpenACC is used on a single node, MPI distributes the calculations over sev-
eral nodes. The MPI parallelisation for a standard SCF calculation distributes the compu-
tational load by using two different schemes: (a) the different k-points are calculated on
disjunct sets of MPI tasks, and (b) the individual eigenvalue problems, the matrix setup
and the charge density generation can also be distributed over several MPI tasks. Most
of the work is devoted to this second level of parallelism since k-point parallelism is rel-
atively trivial to implement with high efficiency. In contrast, special workloads like, e.g.
calculations using hybrid functionals can profit from further levels of MPI parallelisation
like distribution of the work done for so-called kq-pairs. To further boost the parallel
efficiency of FLEUR, we plan to address the following actions:

• Exploration of iterative solvers. Iterative solvers for the diagonalisation of the
Hamiltonian are usually not employed in the case of dense matrices, as we have
to deal with in FLEUR. However, these solvers can often be parallelised more ef-
ficiently, and hence the slightly higher computational cost could be overcompen-
sated by better scalability. While we have some experience with an older imple-

http://www.max-centre.eu 22

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

mentation of the Chase solver, we plan to build on this experience and to extend
the implementation.

• Streamlining of algorithmic dependencies. In some cases, the calculation algo-
rithm could be simplified by moving code and data structures. This could eliminate
the need to store all eigenvectors and the corresponding communication needed to
distribute this data. Hence, for larger simulation setups, this could decrease the
memory footprint and lead to better scalability.

• Additional levels of parallelism. Ultimately, as the diagonalisation of the eigen-
problem is the most computationally relevant part of a standard SCF calculation,
the scalability of the code is impacted by the limited scalability of the correspond-
ing algorithms. To overcome this, we explore different ideas to expose further
parallelism inherent in typical workflows. These could include different strategies
to achieve self-consistency and the overlay of different tasks in a calculation work-
flow. While we have some ideas to explore, these must be tested and concretised
during the project.

3.3 QUANTUM ESPRESSO

The developments on QUANTUM ESPRESSO for this task will be organised into 4 main
lines of action aimed at improving the parallel efficiency and the scalability of the suite
codes at various levels.

• Basal R&G parallelism. The parallelisation at this level is made by distributing
the 3D data sets that describe the densities, the potentials, and the wave func-
tions together with all the operations performed on these objects. In this case, the
speedup is obtained by the general reduction of the latency times of such opera-
tions and, in particular, of the time taken to perform the 3D Fourier Transforms on
the wave functions. This approach is, though, communication greedy and relies on
many synchronisation points that may impair the efficiency of the joint-throughput
operations of the GPUs. In collaboration with WP3, we have planned several mea-
sures to mitigate the impact of communication and synchronisation and to fine-tune
the wave-functions FFT batching to optimise the overlap between the communica-
tion and calculation within the accelerators. The main actions planned are:

– Preliminary profiling of FFTXlib on GPUs, in collaboration with WP3, for
the individuation and definition of the critical bottleneck for communication
and synchronisation. Determination of the communication overhead trend in
relation to the number of batched FFTs, and the optimal overlap between the
communication and computation. (M12)

– Replacement of collective all-to-all communications in FFTXlib with non-
blocking point-to-point communications. (M30)

– support and adoption of alternative communication libraries, e.g. NVIDIA
NCCL and other specific technical solutions indicated by WP3. (M48)

• Band parallelism. Complementary to the work planned at the point above to re-
duce the latency times for processing wave-function data sets, we have also planned

http://www.max-centre.eu 23

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

actions for scaling up the calculations by increasing the throughput of the opera-
tions on the wave functions. This will be done by distributing distinct blocks of
wave functions among different MPI groups. In principle, this strategy can be
pushed up the complete removal of the FFTXlib communication overhead by re-
ducing the band group size to a single rank using a single GPU or significantly
mitigate it by restraining the band groups to a single node, or in case limiting the
number of MPI ranks.

To implement this strategy effectively, we have planned a full refactoring of the
band parallelisation in QUANTUM ESPRESSO. The first objective of these changes
is the complete distribution of the wave-function datasets. This will require the
refactoring of many high-level kernels so that they can operate on the wave func-
tion manifold in blocked mode instead of the monolithic access implemented so
far. This more granular data structure will also allow us to reduce the memory
footprint of the wave functions on the GPU memory. The steps of the program for
this point are:

– Pilot refactoring of the Gram-Schmidt orthogonalisation kernel to make it
work in blocked mode with distributed data and asynchronous device-host
memory copies. (M12)

– Implementation of blocked operation with distributed data for the main iter-
ative solvers in KS_solvers and RMM-DIIS. (M30)

– Extension of blocked band parallelism to all solvers and with real space pro-
jectors. (M48)

• Auxiliary parallelisation levels. The pools and images distributions allow us to
execute concurrently the many semi-autonomous blocks in which the calculations
can be decomposed. These parallelisation levels increase the general throughput
of the calculation. Several measures have been planned to extend and streamline
the usage of these distributions with GPUs:

– For what concerns the image parallelism, the current plans involve mainly the
phonon code and aim at streamlining the joint execution of the images, the
improvement of check-pointing and restart, data sharing between the images,
and dynamical scheduling of the work. Leveraging the experience gained
with this work, further actions for the TDDFPT codes will be added in the
plan integration. (M30)

– For what concerns the pools parallelism, the planned improvements will be
general and extended and will aim at reducing the footprint of this type of
parallelism on the device memory and at making more efficient the over-
subscription of the single GPUs so to increase the available granularity of the
pool distribution. Because the impact of these improvements will be mostly
for relatively small calculations, requiring a small number of nodes, they will
be carried through with a lower priority and planned for completion at M48.

• Distributed linear algebra. QUANTUM ESPRESSO engines also feature an au-
tonomous MPI group to distribute and operate on large matrices. LAXlib APIs

http://www.max-centre.eu 24

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Figure 3: Time to solve the diagonalisation problem corresponding to a piece of sars-cov-2
protein surrounded by water molecules, with approximately 58000 orbitals. Two sets of PEXSI
results (for 20 and 30 poles) are shown. The thin line shows the ideal scalability behaviour.

provide the data structures and APIs this parallelisation exploits. The current pro-
duction version of QUANTUM ESPRESSO doesn’t use distributed linear algebra
in the presence of GPU-acceleration. All matrices are allocated and operated on
a single GPU. Because of calculations with large datasets and to distribute the
memory footprint of these matrices, in the third phase of MAX , we have planned
several actions to enable and incrementally expand the usage of distributed linear
algebra. The planned work and the related timeline are:

– Release of full-fledged support of ELPA GPU solvers in the first MAX re-
lease. (M12)

– Add support for other distributed solvers (including, e.g., MAGMA, SLATE,
CHASE, NVIDIA cuSolverMG, etc). (M30)

3.4 SIESTA

Siesta’s baseline efficiency (regarding resources used for a given system size) is rather
high compared with codes that use plane waves. It is seldom needed to employ a very
large number of nodes to achieve a reasonable level of performance (measured in terms
of time-to-solution and overall cost). Moreover, for very large systems, SIESTA can
profitably use the PEXSI solver, not based on diagonalisation but on a pole expansion
that has a "scalability reserve" coming from several levels of parallelisation (over orbitals,
poles, and values of the chemical potential for interpolation).

A comparison of the (accelerated) diagonalisation solver and PEXSI for a relatively
large system was presented in the D4.3 deliverable of the second phase of MAX , and
the key figures are reproduced here in Fig. 3 as they point to further developments in the
current phase. Next, in Fig. 4 we report total-cost vs time-to-solution, where perfect
scalability is represented by horizontal lines, and a non-zero slope measures the marginal
cost of improvements in time-to-solution. It is clear that the diagonalisation, particularly
the accelerated one, could use some work.

Further work on the scalability of the accelerated diagonalisation solver is, of course,
dependent on developments in ELPA, which is our key workhorse for distributed eigen-
problems. Still, some actions can be taken independently of those developments, such

http://www.max-centre.eu 25

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

Figure 4: Total cost (per scf step) vs time-to-solution for the virus protein problem. The PEXSI
lines correspond to different numbers of tasks per pole (from right to left: 8, 16, 32, 64, 128)

as researching the right combinations of numbers of MPI ranks and the number of GPUs
used per node. In this task, we will be helped by the analysis of traces for parallel opera-
tions to be performed by our BSC colleagues. Further improvements in the parallelisation
of the already performant PEXSI solver will probably come from the technical advice
to be provided by WP3. If, as mentioned in Section 2.5, PEXSI is enhanced with GPU
support, the same kind of analysis as for diagonalisation will be carried out.

Multiple levels of parallelization are one important route for scalability, as exem-
plified by the PEXSI solver. One section of SIESTA that can benefit from multiple
distribution levels is the TranSiesta module, which currently is parallelised over the
energies used for integration in a complex-plane contour, but not over orbitals.

3.5 YAMBO

YAMBO has proved to scale efficiently both in homogeneous and heterogeneous architec-
tures but some issues remain to be tackled regarding extreme scaling.

• Memory footprint. The overall memory footprint is still one of the limiting factors
of a typical YAMBO calculation, especially in the presence of GPUs. We intend
to address both the memory distribution and the memory buffers by increasing
the granularity of data structures. This requires the implementation of alternative
distributions of the workload and the handling of the host-device data copies (e.g.
device WFs buffering systems on the host, or other non-volatile memory).

• Load imbalance. YAMBO makes use of different levels of parallelization. Exam-
ples include transferred momenta, number of bands, number of k-points, and space
variables for the linear response runlevel or transferred momenta, quasi-particles,
and number of bands for the calculation of the GW self-energy. Some of the levels
can be considered embarrassingly parallel because they are almost independent,
but indiscriminate use can lead to unwanted behaviours. For instance, the differ-
ent symmetry of the k-points can result in a very different computational cost of
the respective calculation. This leads to an imbalance in the workload and con-
sequently less than optimal scalability and a larger time-to-solution. We intend to

http://www.max-centre.eu 26

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

implement schemes to improve the load balance, considering, for example, prima-
ry/subordinate or dynamical scheduling programming models or a re-balancing of
the tasks.

• Diagonalisation schemes. BSE calculations mathematically require solving a
large eigenvalue problem, through the diagonalisation of the whole Bethe-Salpeter
matrix. Depending on the approximations used, the matrix can be Hermitian
(within the Tamm-Dancoff approximation) or not, requiring different numerical ap-
proaches. At present, the schemes implemented in YAMBO are: (1) diagonalisation
of the full Hamiltonian using the standard (SCA)LAPACK library, (2) subspace
iterative Lanczos algorithm which by-pass diagonalisation, and directly gives the
dielectric function, with the Haydock approach, and (3) subspace iterative algo-
rithm using the SLEPc library which can extract a limited number of eigenvalues
and eigenvectors of the BSE matrix.

However, a systematic porting on GPU of these diagonalisation solvers has still
to be performed. Regarding the first diagonalisation scheme, we intend to imple-
ment in YAMBO the GPU interface to non-Hermitian solvers available through the
MAGMA library. The remaining schemes will either be ported to GPUs or re-
placed by alternative approaches. We are also in touch with the developers of the
SLEPc library to address this point.

• GPU-aware distributed linear algebra. GPU-aware distributed linear algebra
libraries are software frameworks that provide optimised implementations of dis-
tributed linear algebra operations, taking advantage of both GPU acceleration and
distributed computing systems. These libraries are designed to efficiently handle
large-scale linear algebra computations by distributing the workload across multi-
ple nodes and utilising the parallel processing capabilities of GPUs.

In order to exploit these approaches, some considerations need to be taken into
account: (i) the library has to adopt efficient communication mechanisms between
the GPUs and the computing nodes to exchange data and intermediate results; (ii)
splitting the data appropriately across the distributed nodes is essential for efficient
GPU usage. By taking these two aspects into consideration we will test YAMBO

with libraries that will be available on the market (examples include NVIDIA cu-
solverMp, ELPA, Slate, etc) in order to implement the inversion of the matrix
χ0
G,G′ and the BSE diagonalisation in distributed fashion.

• Scalability. In order to assess the effect of the implementations described in the
previous points and the remaining or new bottlenecks of the code, we plan to con-
tinuously perform scalability tests in the different architectures available. For this,
we will make use of a simple profiling system, consisting of a set of clocks imple-
mented in the YAMBO code, and memory tracking for both host and device. When
running in parallel, every process (by default), or a subset (if specified), writes a
log file. The analysis of these files will help identify any workload imbalance and
non-optimal memory allocation.

http://www.max-centre.eu 27

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

4 Task 3: Maintenance, sustainability and deployment

The wide set of activities and developments detailed in this plan will significantly change
the internal working and logical flow of the MAX flagship codes. Indeed, these actions
will support new features, plugins, and data-exchange methods and the possibility of the
codes to be deployed in many diverse architectures. Adopting and implementing soft-
ware engineering best practices will be crucial to hold together and monitor the correct
functioning of all these additions for all the supported architectures. To this end, the
present Task is dedicated to the above actions and is mainly aimed at:

• Implementing an automatic build system support for all new features in all archi-
tectures targeted for the deployment. This will be done for all codes using either
autotools or CMake systems.

• Experimenting with meta-programming, templating, and auto-formatting strate-
gies that can enhance source abstraction, expressiveness and readability. The
main and critical goal here is to maintain a single code base for CPU and GPU-
accelerated sections of the codes.

• Providing package manager support for MAX codes deployment using e.g. Spack,
EasyBuild, or JHBuild. This should streamline the automatic deployment of
the Lighthouse codes on HPC centres, including EuroHPC ones. This is essential
since, given a building system, it is still necessary to map the dependencies of the
code to appropriately installed libraries, whose location and characteristics might
vary from system to system. Ideally, EuroHPC centres could implement a mini-
mally standardised “software stack discovery wrapper”, to facilitate this task. For
example, even if a centre is using EasyBuild to manage the installed software
stack, it could still provide a set of Spack configuration files that define the ap-
propriate compilers, MPI subsystems, and optimised linear-algebra libraries. The
design of this wrapper should be a collaborative task between centres and code
owners.

• Building and maintaining a testing apparatus to ensure continuous integration
(CI) and monitor possible regressions and the performance evolution for all archi-
tectures of interest.

• Providing interfaces for profiling systems that are abstract enough to work on
multiple architectures and system installations. This naturally links to the items on
meta-programming and testing, but it is important enough to merit special consid-
eration.

• Working at the integration of the Lighthouse applications in environment man-
agers, containers, and other automatised deployment tools (CD).

• Provide regular software releases of the MAX flagship codes.

While the general actions listed above will be common to, and implemented by, all MAX
flagship codes, specific actions or refinement of the above may also be considered by
each code individually. Examples include the streamlining of the IO software stack used
by the YAMBO code (aimed at focusing further on the HDF5 library) or the integration of

http://www.max-centre.eu 28

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

accelerated solver libraries with all their ported options into the interfaces and the build
system to be done by SIESTA.

5 Task 4: Interoperability and exascale workflows

As the proposal states, this Task aims at actions on the codes to successfully deploy
exascale workflows, emphasising the application showcases (scientific grand challenges).
These actions fall into different classes:

• The implementation of new property calculators (e.g., an improved description
of thermal or electronic transport, a new spectroscopy, or a new formulation of
coupled electron-ion dynamics);

• The provision of interoperability hooks in individual codes to allow for their
seamless integration into larger workflows when needed (jointly with T2.4);

• The technical developments required to treat special classes of systems (e.g., ad-
dressing memory footprint for large-scale simulations or treating the presence of
dielectric boundaries) since scientific use cases are also going to evolve with the
advent of exascale machines;

• The re-organisation of the I/O of intermediate data to improve on check-point
restarting and code resilience (jointly with T2.4).

Most of these actions strictly depend on developments and design decisions made
in other work packages, particularly WP2 and WP3. Hence their insertion in the WP1
software-development plan must be, by necessity, only indicative. Only the development
of new property calculators and other capability features can be mapped with some level
of confidence at this time, and even there, unforeseen new developments are still possible.
The first subsection deals with the latter on a code-by-code basis. The remaining actions
are outlined in a separate Section dealing with interoperability and system interfaces and
will be detailed in revising this software-development plan at M18.

5.1 New property calculators and capability enhancement

5.1.1 Quantum ESPRESSO

Several new fundamental features will be added to the QUANTUM ESPRESSO suite to
pave the way for the implementations of the non-adiabatic molecular dynamics (NAMD)
workflow of WP2. The two main features, the excited-state energy gradients and the
excited states non-adiabatic couplings will be developed and implemented in the first
part of the project and delivered for the production version at month 30. These property
calculators will leverage the current turbo_davidson code [1], which computes ex-
plicitly the electronic excitations (by contrast, the turbo_lanczos, although faster,
only provides spectral lineshapes) and their response orbitals.

Given that, routine calculations with NAMD algorithms require many evaluations of
gradients and non-adiabatic couplings along many trajectories associated with the differ-
ent photochemical and photophysical decay pathways, it will also be crucial to first have
an efficient porting to GPUs of turbo_davidson, and enabling the image parallelism

http://www.max-centre.eu 29

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

the TDDFPT applications. After these preliminary steps, we will cope with the computa-
tion of the derivatives of response orbitals [2], even using a Z-vector approach [3]. This
is expected to be the bottleneck of the calculations and will need careful analysis and
optimization with a specific implementation for GPUs. The implementation timeline of
these features will be:

• Efficient turbo_davidson implementation for the CUDA/OpenACC backend.
(M12)

• Porting of turbo_davidnon to AMD cards with the openMP backend. (M24)

• Enabling image parallism in TDDFPT codes. (M30)

• Calculator of excited states energy gradients. (M30)

• Calculator of excited states adiabatic-couplings. (M30)

5.1.2 Siesta

One first group of feature improvements addresses the capabilities related to the ions and
electrons dynamics, which is needed for the "sampling" side of workflows. SIESTA
is well-positioned for this role due to its intrinsic efficiency for large systems and its
implementation (in TranSiesta) of non-equilibrium methods for biased systems.

• Implement a new parallelisation level in TranSiesta to enable large-scale sys-
tems simulations under electrical bias.

• Further development of the TD-DFT subsystem, including non-adiabatic dynam-
ics.

• A more tightly integrated QM/MM capability for large systems.

A further class of features involves high-efficiency analysis tools. Currently, these are
mostly implemented as post-processing utilities, working on data on disk produced by a
previous execution of the program. Their re-implementation as modules with a pipelining
capability will allow their insertion in workflow analysis or screening phases. A singular
example of this class of methods is the electronic structure analysis to define fragments in
the manner done by the BIGDFT project. SIESTA shares with BIGDFT the use of basis
sets with localised support functions and can employ similar methods for the fragment-
search task. This will enable interoperability with the workflows based on fragment
analysis.

5.1.3 BigDFT

The planned activities of the BIGDFT development group in the current project are
mainly related to the extended usage of complex workflows employing linear scaling
(LS) calculations. Therefore, the main effort in this context will be related to the serial-
isation of the descriptors, which can be extracted from the density matrix of large-scale
calculations with biological systems. The serialisation of such descriptors into suitable

http://www.max-centre.eu 30

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

data structures will enable the efficient usage of workflows at the exascale regime for the
characterisation of the interactions of biological systems at the DFT level.

Another relevant point will be extending these calculations to higher levels of the-
ory, like hybrid functionals, which can benefit from accelerated platforms. A proof-of-
principle of the method has already been implemented in the context of the previous
MAX project and will be used as a ground basis to verify the potential sizes that can be
reached with those calculations.

The BIGDFT team is also working on several complementary developments, in-
cluding PyBigDFT’s remote runner approach, which incorporates job submission into
Jupyter Notebook workflows. This is being tested on a range of supercomputers, and
it will be ensured that it works smoothly on EU HPC Architectures.

5.1.4 Fleur

For the FLEUR code, we are currently focusing on different types of calculations in which
exascale computing could have a significant impact. Significant effort is planned along
the following lines.

• Hybrid calculations. The newly refactored implementation of the hybrid func-
tionals in FLEUR is a natural application case for exascale computing. Having
already demonstrated their scalability, their interoperability with several other im-
portant features is still to be improved. In particular, combining hybrid functionals
with spin-orbit coupling is an important goal to extend the functionality so that
exascale workflows using this combination of features become possible.

• Density functional perturbation theory for phonons. An implementation of
density functional perturbation theory for phonons is currently added to the FLEUR
code. The numerical challenges are worked on, and the basic algorithm is mostly
finished. In the future, we plan to enhance the performance of this feature and use
it to calculate further properties, e.g., electron-phonon coupling.

5.1.5 Yambo

This Section presents the topics and features for implementing new property calculators
within the YAMBO developer community. In terms of physical features:

• Coupled electron-ion dynamics. This covers a large umbrella of approaches deal-
ing with the dynamics of electrons and their excitations with atomic motion. In
particular, we will consider going beyond the Born-Oppenheimer approach by im-
plementing a non-adiabatic classical dynamics (e.g. Ehrenfest) of ions coupled
to the electronic degrees of freedom. This implementation will then be used in a
related scientific demonstrator.

• Electron and exciton coupling to phonons. As a complementary approach to
describing electron/ion coupling, we plan to directly implement electron-phonon
and exciton-phonon coupling within Green’s function formalism. These develop-
ments are a relevant and interesting example of calculations entering more complex
workflows, where combined many-body perturbation theory (MBPT) and density
functional perturbation theory (DFPT) calculations are run together.

http://www.max-centre.eu 31

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

• Beyond-GW self-energies. Self-energy schemes beyond the GW approximation
have been extensively studied in the literature and often proposed as viable solu-
tions to address some of the GW shortcomings. Among these, the GW+Cumulant
approach [4, 5] to better treat satellites, the second Born or SOSEX self-energies [6,
7, 8] to cure for higher order exchange terms, or TD-HF and BSE vertex correc-
tions [9, 10]. Given the increasing computational power the emerging HPC archi-
tecture provides, implementing beyond-GW approaches becomes more and more
relevant and timely.

• GW self-consistency. One of the critical aspects of state-of-the-art G0W0 ap-
proaches is the method’s lack of self-consistency (or initial state dependence).
Here we plan to implement self-consistent schemes aimed at mitigating the is-
sue. In the short term, we plan to implement the so-called QSGW (quasi-particle
self-consistent GW) scheme [11]. Alternative and more advanced approaches may
be considered in the revised SDP at M30.

Moreover, given their relevance, several technical developments required to treat spe-
cial classes of systems and properties are also considered:

• Electrostatic embedding of GW and BSE. The treatment of the electrostatic envi-
ronment, including the response of the surrounding medium, is particularly critical
when studying the electronic and optical spectroscopic response of materials, in-
cluding, e.g. layered structures, interfaces, and molecules. To this aim, we plan to
implement modelling of the environment for the GW and BSE theoretical schemes
based on the polarizable continuum model, i.e. including the environment via its
classical dielectric response. The revised SDP may consider further development
of the embedding scheme for GW and BSE.

• Convergence accelerators for materials in different dimensionalities. MBPT
methods can become computationally very expensive because of their algorithmic
scaling. Convergence accelerators for these methods, including GW and BSE, are,
therefore, quite important and effective. Within this task, we consider developing
and implementing advanced schemes to treat materials with different dimension-
ality (2D layers, 1D systems, etc) with different physical behaviour (metals, semi-
metals, semiconductors). This activity will enable accurate and computationally
less expensive calculations for materials (such as 2D layered systems) of special
interest to the scientific community.

5.2 Interoperability hooks, system interfaces, and other measures to enable
workflows.

The details on the common layer of interoperability hooks and other measures to enable
workflows will eventually be decided within WP2. Their implementation plan will be
presented at M18 in the update of the present Software Development Plan. The codes
will work together to implement some general interoperability measures, such as the en-
hancement of the formatted I/O, also extended to error logging and the preparation of
performance models and predictors that can help workflow managers to manage com-
putational resources efficiently. In this earlier phase, the code development teams have

http://www.max-centre.eu 32

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

started several pilot developments concerning data exchange and resource control. The
outcomes of these pilot developments will be helpful for the final design and implemen-
tation. In this Section we report some examples of these pilot developments.

• YAMBO and QUANTUM ESPRESSO groups will work together to implement
several data-exchange schemes:

– YAMBO-QUANTUM ESPRESSO interface. Two steps will be followed: (i)
the exchange of electron-phonon (el-ph) data will be improved to make it
suitable for exciton-phonon calculations; (ii) YAMBO will load the info of
the pseudo-potential files in the UPF format using the upflib APIs.These
data will allow the calculation of the electron-phonon matrix elements and
the performing of coupled electron-ion dynamics.

– YAMBO calls QUANTUM ESPRESSO on the fly during the time-evolution
simulations to re-compute the reference DFT electronic structure once ionic
positions have been changed during dynamics.

– QUANTUM ESPRESSO calls YAMBO on the fly to compute GW energy lev-
els or bands and optical properties during molecular dynamics (MD) runs
performed by QUANTUM ESPRESSO.

– Moreover, YAMBO may compute BSE forces (gradients of the BSE excitation
energies) to be later used for surface hopping molecular dynamics. This inter-
action also pertains to the case where QUANTUM ESPRESSO calls YAMBO

on the fly.

• The SIESTA group will explore aspects of resource control and load-balancing
that are important in the context of "producer-consumer" workflows, such as the
computation of properties for a series of snapshots in a molecular-dynamics run.
Initial experiments with HyperQueue have shown that it might be possible in most
cases to abstract the resource handling at a higher level, without requiring modifi-
cations to the system’s scheduler.

• BIGDFT will work on designing and implementing a data structure suited for
saving and exchanging the serialised descriptors of the electronic density matrix.

• FLEUR will work on designing and implementing an interface for exchanging spin
model parameters with external applications.

http://www.max-centre.eu 33

http://www.max-centre.eu

HORIZON-EUROHPC-JU-2021-COE-01
MAX – EUROPEAN CENTRE OF EXCELLENCE FOR
HPC APPLICATIONS, GA n. 101093374

Deliverable D1.1: First report on software architecture and
implementation planning

6 Conclusions

This report represents a first version of the Software development Plan of MAX phase-3.
It presents a general outline of the organisation of the codes and discusses the technical
changes underlying the optimisation strategies that we intend to adopt. Being drafted
at a relatively early stage, the document does not define all the final technical details of
our development plan but rather identifies the general lines of action, the objectives, the
issues, and the available technical solutions to be explored before actual adoption.

This document represents a necessary reference for WP1 as well as the other technical
work packages (WP2, 3 and 4) for identifying the contact points between specific work
package plans. These contact points will be crucial for many of the postponed technical
decisions. We thus take advantage of this conclusive Section to summarise the main
inputs from WP1 for the other work packages and the necessary interactions for the next
steps and decisions in WP1.

Regarding WP2, in Section 5.1 this report provides a preliminary list of the property
calculators that will be developed or enhanced for the scientific workflows. The work on
these implementations and their earlier outputs will be instrumental for the design of the
interoperability layer to be done within WP2. The collaborative actions between different
code groups will be particularly useful to this end. For example, YAMBO and QUANTUM

ESPRESSO developers have already started working on a common layer to exchange
wave function and deformation potential data sets between the two codes.

The final design of the interoperability layer, Section 5.2, provides instead a pre-
liminary description of the work that will be done for implementing the data exchange
between our applications and the flow control. A complete description for these imple-
mentations will leverage the output of WP2 for defining a common interoperability layer
and assessing the capabilities of AiiDA and Hyperqueue in workflow orchestration.

The interaction with WP3 will concern all technical issues requiring general HPC ex-
pertise. As input for WP3, we provide a detailed discussion of all the technical questions
needed. Most of these points were discussed in Sections 2 and 3 and involved optimising
offloading to GPUs, memory management, and the communications between them. Tun-
ing the configuration of work schedulers will be needed to offer a more flexible resource
allocation. Within WP3, the work for benchmarking and profiling will be instrumental
in choosing the best strategies for refactoring some code parallelisation and automatic
tuning of the parallelism. Another general point where this document prompts interac-
tion with the experts in HPC centres is the GPU-aware distributed linear algebra. Here
WP3 input will be instrumental in identifying the appropriate libraries for the different
problems and machines, and in designing the data distribution for such applications.

In section 2, we have presented our current work plan for portability. It is strongly
oriented towards heterogeneous architectures based on GPUs. While this is the prevailing
solution and would allow us to support all current EuroHPC clusters, the HPC situation is
still subject to sudden scenario changes. The actions needed to remain responsive to such
changes will be agreed upon together with WP 3 and 4. Notably, these work packages
monitor the evolution of HPC hardware, which is a key action for what concerns our
software development plan. The interactions on this point will also make use of our
work on unit testing presented in Sec. 4 that could be used to produce mini-apps for the
emulation of the single kernels in candidate architecture and for individuating possible
bottleneck and portability issues in these architectures.

http://www.max-centre.eu 34

http://www.max-centre.eu

BIGDFT URL: https://www.bigdft.org

Description and scientific targets. Starting in 2005,
the BigDFT EU project aimed to test the advantages of
Daubechies wavelets as a basis set for DFT using pseudopo-
tentials. This led to the creation of the BigDFT code, which
has optimal features of flexibility, performance and preci-
sion. In addition to the traditional cubic-scaling DFT ap-
proach, the wavelet-based approach has enabled the imple-
mentation of an algorithm for DFT calculations of large sys-
tems containing many thousands of atoms, with a computa-
tional effort which scales linearly with the number of atoms.
This feature enables electronic structure calculations of sys-
tems which were impractical to simulate even very recently.
BigDFT has rapidly become a mature and reliable package
suite with a wide variety of features, ranging from ground-
state quantities up to potential energy surface exploration
techniques. BigDFT uses dual space Gaussian type norm-
conserving pseudpotentials including those with non-linear
core corrections, which have proven to deliver all-electron
precision on various ground state quantities. Its flexible
poisson solver can handle a number of different boundary
conditions including free, wire, surface, and periodic. It is
also possible to simulate implicit solvents as well as external
electric fields. Such technology is employed for the compu-
tations of hybrid functionals and time-dependent (TD) DFT.
Diffusion. BigDFT is free and open source software, made
available under the GPL license. The code is developed by
few individuals, ranging from 6 up to 15 people. The active
code developers are, or have been, located in various groups
in the world, including EU, UK, US, and Japan. For these
reasons, in addition to production calculations aimed at sci-
entific results, the code has been often employed as a test-
bed for numerous case-study in computer science and by
hardware/software vendors, to test the behaviour of novel-
/prototype computer architectures in realistic runtimes. The
compilation of the code suite relies on the splitting of the
code components into modules, which are compiled by the
bundler package. This package lays the groundwork for
developing a common infrastructure for compiling and link-
ing together libraries for electronic structure codes, and it is
employed as the basis for the ESL bundle.
Performance in HPC environments. BigDFT is a award-
winner DFT code, recipient of the first edition (2009) of
the Bull-Fourier prize for its “the ground-breaking usage of
wavelets and the adaptation to hybrid architectures, combin-

ing traditional processors and graphic accelerators, leading
the path for new major advancements in the domain of new
materials and molecules”. It is parallelized using a combi-
nation of MPI and OpenMP and has support for GPU ac-
celeration since the early days of GPGPU computing. Such
supports involve both CUDA as well as OpenCL computing
kernels, and can be routinely applied to large systems. For
example, the calculation of a 12,000 atom protein system re-
quires about 1.2 hours of wall-time on 16 nodes of the Irene-
ROME supercomputer. This calculation can be further ac-
celerated for systems composed of repeated sub-units using
a fragment approach for molecules, or in the case of ex-
tended systems, a pseudo-fragment approach, both among
the outcomes of MaX2 project.

The Figure above shows the benefits induced by a multi-
GPU calculation on a PBE0 calculation (seconds per 2 SCF
iterations) of a system made of 5400 KS orbitals on Piz
Daint. Such calculations can scale effectively up to the
range of thousands of GPUs and compute nodes.
To facilitate driving the calculations of dense workflow
graphs involving thousands of simulations of large systems,
the code suite includes a python package called PyBigDFT
as a framework for managing DFT workflows. PyBigDFT
is able to handle building complex systems or reading them
from a variety of file types, performing calculations with
BigDFT linked with AiiDA package, and analyzing calcula-
tion results. This makes it easy to build production analysis,
thereby enabling new users’ production HPC experiences
on top of the data generated from large scale DFT calcula-
tions. Currently, BigDFT is being deployed on large HPC
machines including Fugaku (RIKEN, JP), Archer2 (Edin-
burgh, UK), and Irene-ROME (TGCC-CEA, FR).

https://www.bigdft.org

FLEUR URL: https://www.flapw.de

Description and scientific targets. FLEUR is an all-
electron density functional theory code based on the
full-potential linearized augmented plane wave (FLAPW)
method. A key difference with respect to the other MAX -
codes and indeed most other DFT codes lies in the treatment
of all electrons on the same footing. The key component of
FLEUR is a versatile DFT code for the ground-state prop-
erties of multicomponent one-, two- and three-dimensional
solids. A special focus lies on non-collinear magnetism,
the determination of exchange parameters, spin-orbit related
properties (topological and Chern insulators, Rashba and
Dresselhaus effect, magnetic anisotropies, Dzyaloshinskii-
Moriya interaction) and magnon dispersion. A link to
WANNIER90 enables the calculation of intrinsic and extrin-
sic transverse transport properties (anomalous-, spin- and
inverse spin Hall effect, spin-orbit torque, anomalous Nernst
effect, or topological transport properties such as the quan-
tum spin-Hall effect etc.) in linear response theory using the
Kubo formula. FLEUR includes LDA+U as well as hybrid-
functionals for the accurate description of e.g. oxide materi-
als and by linking against the libxc library, many more func-
tionals are accessible. Using its link to the SPEX code more
advanced treatments using the GW method or the GW+T
approximation to magnetic excitations are possible starting
from FLEUR. The well established FLAPW scheme is usu-
ally considered providing the most accurate DFT results and
used as a reference for other methods. In addition, several
quantities e.g. related to the properties of core-electrons are
only available by the use of code not relying on the pseu-
dopotential approximation.
Being applicable to all elements of the periodic table and by
including all electrons, the code has its particular strength in
the fields of electronically and magnetically complex ma-
terials, for example materials involving transition metals,
heavy or rare-earth elements and thus is frequently used to
calculate magnetic or spin-dependent properties in metals
or complex oxide materials. It provides a natural link to
other methods via the calculation of parameters for atom-
istic magnetic simulations or similar multiscale modelling
methods.
Diffusion. FLEUR is distributed freely under the MIT li-
cense and has a growing user community. While about 3000
users registered on the older FLEUR-webpage the current
free distribution scheme does no longer allow user tracking.
Performance in Parallel Computing environments.
FLEUR is utilising several levels of parallelization to ex-

ploit both, intra-node and inter-node distribution of the
calculation. On the most coarse level, the calculations
can be split over different k-points (and q-points where
present) leading to an excellent scaling behaviour. This
can be seen in the following table in which we demon-
strate excellent weak and good strong scalability on
JUWELS booster up to roughly a quarter of the machine
with a nominal performance of approximate 15 PFlops.

Nodes Time Scaling
10 434 s --
20 222 s 1.95
40 121 s 3.59

160 k-points 800 k-pointsx5

Nodes Time Scaling
50 438 s --

100 228 s 1.92
200 124 s 3.53

In addition to this outer parallelization level, FLEURalso
employs more fine-grain parallelism, distributing the calcu-
lation associated with the different eigenstates. This par-
allelization is largely ’orthogonal’ to the scaling shown
before in which only a single GPU was assigned to this
level. This level is strongly dependent on the details
of the system as well as the kernel to be used. As an
example (without any outer parallelization), we show
in the Fig. below the scalability for the calculation us-
ing hybrid functionals on the JURECA-DC cluster with
4 NVIDIA A100 cards per node, e.g. up to 16 nodes.

As a production calculation for the system studied here
would require several hundred kq-points the combination of
the two levels of parallelism discussed here could be scaled
up to fill existing supercomputers easily.

https://www.flapw.de

QUANTUM ESPRESSO URL: https://www.quantum-espresso.org

Description and scientific targets. QUANTUM

ESPRESSO is a suite of applications for ab-initio elec-
tronic structure calculations using plane waves and pseu-
dopotentials. The code is mostly written in modern For-
tran. The suite supports standard GGA and many advanced
functionals such as non-local vdW-enabled, meta-GGA,
Hubbard-corrected, hybrid functionals. It can be linked
with Libxc and use all functionals implemented there.
The codes of the suite may perform many types of ground-
state calculations: self-consistent energies, forces and
stresses, structural optimization, molecular dynamics (PW
and CP); search for transition pathways (NEB). The suite
also contains a rich apparatus of routines and methods for
the computation of the linear response to external perturba-
tions. These are used for computing dielectric responses and
vibrational spectra (PHonon); optical, magnons, and EELS
spectra, using time-dependent DFT (TDDFPT); electron-
phonon coupling coefficients and related properties (EPW);
self consistent Hubbard correction parameters(HP), and
more.
QUANTUM ESPRESSO applications are also used as start-
ing point for workflows that implement advanced method-
ologies such as MBPT, QMC, DMFT and others.
Diffusion QUANTUM ESPRESSO is released under the
GPL licence. It has a sizeable basis of users, as appar-
ent from the number of citations of the two documenting
papers of 2009 [?] (16,000+) and 2017 [?] (2,500+), au-
thored by 25,000+ scientists and by the number of mes-
sages exchanged on the users’ mailing list (2000+/year).
In addition to the inner circle of developers (≈20), QUAN-
TUM ESPRESSO often receives contributions from exter-
nal users and developers. There are currently 107 forks of
the main GitLab repository, and 243 of the GitHub mirror.
We are aware of at least 12 independent successful software
projects that rely entirely on QUANTUM ESPRESSO tech-
nology and codebase for further development.
Performance in HPC environments Most of the applica-
tions of the suite are designed for the efficient usage of the
state-of-the-art HPC machines using multiple paralleliza-
tion levels. The basal workload distribution can be done us-
ing MPI + OpenMP multithreading, or offloading it to GPG-
PUs, depending on the nodes’ architecture. This paralleliza-
tion level also provides an efficient data distribution among

the MPI ranks. This allows to compute systems with up
to ∼ 104 atoms. The offloading or the usage of a grow-
ing number of MPI ranks are able to scale down the com-
putational cost of 3D FFTs and other operations on 3D data
grids. In the figure above we show the performance analysis
for a mid-size case (A Carbon nanotube functionalized with
two porphyrine molecules, about 1500 atoms, 8000 bands, 1
k-point) on an HPC homogeneous nodes’ cluster. The ker-
nels distribute their workload on the lower parallelization
group, except for WFCrot whose perfomance relies instead
on parallel or accelerated linear algebra specific libraries.
The auxiliary MPI parallelization levels allow to obtain
further scaling. The band parallelization level distributes
the operations on wave functions of different basal groups.
The two upper parallelization levels – pools and images –
are very efficient because they distribute the computations
in concurrent quasi-independent blocks; as shown in the
figure below for a PH calculation on 72 atoms quartz, ex-
ecuted on an heterogeneous nodes’ HPC cluster equipped
with Ampere GPGPUs.

https://www.quantum-espresso.org

SIESTA URL: https://siesta-project.org

Description and scientific targets. SIESTA is a
pseudopotential-based density functional theory software
whose strength lies in its use of atomic-like strictly-
localised basis sets: the use of a “good first approxima-
tion” to the full problem decreases the number of basis
functions needed to achieve a given accuracy, and the fi-
nite support of the orbitals leads to sparsity in the Hamilto-
nian and overlap matrices, thus enabling the use of reduced-
scaling methods. The functionalities of SIESTA include,
amongst others, the calculation of energies and forces,
molecular-dynamics simulations, band structures, densities
of states, spin-orbit couplings, van der Waals functionals,
hybrid functionals, DFT+U for correlated systems, real-
time TDDFT, and density-functional perturbation theory.
SIESTA contains the transport code TRANSIESTA, which
is based on the non-equilibrium Green function formal-
ism and enables open-boundary condition calculations by
extending periodic regions with bulk electrodes. TRAN-
SIESTA’s features include advanced inversion algorithms,
multiple electrodes, thermo-electric calculations, real-space
calculations (without k-points), and phonon transport calcu-
lations. SIESTA can also be used to provide base calcula-
tions for the execution of other electronic structure packages
such as BERKELEYGW (optical properties and quasiparti-
cle excitations), GOLLUM (transport), WANNIER90 (maxi-
mally localized Wannier functions and advanced electronic
properties), or I-PI (nuclear quantum effects in condensed
phase systems). SIESTA is known to be used in a wide
range of applications, encompassing materials science, nan-
otechnology, catalysis, biological sciences (including inter-
action between organic and inorganic materials), geology
and materials under high pressure, Martian geochemistry,
materials for nuclear reactors, and astrophysical and atmo-
spheric systems.
Diffusion SIESTA is distributed for free under a GPL li-
cense. Release tarballs and development versions can be
downloaded from its GitLab repository, while tutorials and
other learning materials are publicly accessible from a ded-
icated documentation site. Further hands-on training activi-
ties are organised routinely, and SIESTA developers (about
20 of them active at the moment) can be easily reached
through the SIESTA mailing list and the usual forums of
the electronic structure community. SIESTA has a large
use base, as displayed by the number of citations that the
reference publication [?] receives every year, well over 600
(more than 12,000 citations by early 2022).

Performance in HPC environments SIESTA is written in
modern Fortran with both MPI and OpenMP parallelism.
For most problems, the most computationally-demanding
stage of SIESTA execution is the solver stage (calcula-
tion of energy eigenvalues from the above-mentioned sparse
objects). On the one hand, SIESTA provides a range of
solvers of its own, from cubic-scaling diagonalisation to
linear-scaling methods, that exploit existing linear algebra
libraries such as SCALAPACK, ELPA, and DBCSR. On
the other hand, SIESTA can leverage a number of libraries
that implement favourably-scaling solvers, such as CHESS

(Fermi Operator Expansion method) and PEXSI (Pole EX-
pansion and Selected Inversion method). All these libraries
are designed for parallel execution, and they are progres-
sively incorporating support for offloading to an increasing
breadth of GPU architectures. The figure below exemplifies
the scaling of some of the solvers mentioned above in the
Marconi 100 supercomputer: starting from the CPU version
of the ELPA solver, the same solver with GPU offloading
displays a significant speed-up, although with some degra-
dation in its scaling probably due to no longer saturating
the GPUs. In comparison, the (CPU-only) PEXSI solver al-
lows for scaling to a significantly larger number of nodes
with less degradation. The accuracy of the PEXSI solver
improves with the number of poles used in the expansion it
performs; it can be seen how the increased accuracy enables
scaling to a larger number of nodes, thus not increasing the
time to solution.

In the Figure: Time to solve the diagonalization problem
corresponding to a piece of SARS-COV-2 protein sur-
rounded by water molecules, with approximately 58,000
orbitals, in Marconi 100). The dashed line shows the ideal
scalability behaviour.

https://siesta-project.org

YAMBO URL: https://www.yambo-code.org

Description and scientific targets. YAMBO is an open-
source code released within the GPL licence that imple-
ments ground-state as well as excited-state properties in an
ab initio context. The code implements MBPT, DFT and
Non-Equilibrium Green’s Function Theory (NEGF) in order
to allow the user to calculate a wealth of physical properties:
reliable band gaps, band alignments, defect quasi-particle
energies, optical and non–equilibrium properties. YAMBO

resorts to previously computed electronic structure, and for
this reason it is interfaced with other DFT codes, among
which QUANTUM ESPRESSO.
Among the variety of physical quantities that can be de-
scribed with YAMBO, we mention

• Electronic properties: quasi-particle energies, line-
widths, and renormalization factors;

• Linear optical properties, capturing the physics of ex-
citons, plasmons, and magnons;

• Temperature dependent electronic and optical proper-
ties via electron-phonon coupling;

• Non–equilibrium and Non–linear optical properties
via NEGF real–time simulations;

• Advanced post-processing tools to analyse the simu-
lation flow of data.

All these properties are ubiquitous for the understanding of
the optical and electronic properties of a wealth of advanced
materials. More importantly, YAMBO provides a unique ap-
proach for the non–equilibrium regime, where ab initio nu-
merical tools are scarse, able to model Pump&Probe experi-
ments and to capture coherent electron dynamics. The code
is under a constant development and fully documented.
Diffusion. YAMBO has attracted over the years a growing
community of code users and developers. The code is rou-
tinely used to organise hands–on schools where the most
fundamental concepts of the underling theory are described.
A dedicated user forum (with more than 900 subscribers) is
actively used to answer users’ questions and doubts. The
code has been used to produce the results published in hun-
dreds of papers by many different groups all over the world.
The YAMBO reference papers,[?, ?] have been cited more
than 800 times to date (Mar 2022). At the moment YAMBO

counts about 20 active developers and the source project is
publicly hosted on the github platform.

Performance in Parallel Computation environments.
YAMBO has a user-friendly command-line interface, flex-
ible I/O procedures, and it is parallelised by using an hybrid
MPI plus OpenMP infrastructure, very well integrated with
support of GPGPU-based heterogeneous architectures. This
makes it possible to distribute the workload to a large num-
ber of parallel levels. In practice, depending on the kind of
calculation, all the variables to be used (k/q grids, bands,
quasi-particles, etc) are distributed along the different level
of parallelisation. At present YAMBO has been shown to be
efficient in large-scale simulations (several upto few tens of
thousands MPI tasks combined with OpenMP parallelism)
for most of its calculation environments.
The GPU porting was first made using CUDA-Fortran, and
more recently enlarged to other programming models (like
OpenACC and OpenMP5, both in development). To avoid
code duplication, we make an intense use of pre-processor
macros that activate the language chosen at compile time.
This allows YAMBO to optimally integrate MPI-OpenMP
with programming models for GPGPU. The outcome of this
integration is well exemplified by the scaling tests reported
in figure, for the calculation of quasi-particle corrections on
a graphene/Co interface (GrCo) composed by a graphene
sheet adsorbed on a Co slab 4 layers thick, and a vacuum
layer as large as the Co slab. The test represents a proto-
type calculation, as it involves the evaluation of a response
function, of the Hartree-Fock self-energy and, finally, of the
correlation part of the self-energy. The scalability and rel-
ative efficiency are reported in the Figure as a function of
the number of GPU cards and show a very good scalabil-
ity up to 1440 GPUs (360 nodes on Juwels-Booster@JSC,
4 NVIDIA A100 per node).

https://www.yambo-code.org

HORIZON2020 European Centre of Excellence

Deliverable D1.1
First report on software architecture and implementation plan-
ning

References

[1] Ge, X., Binnie, S. J., Rocca, D., Gebauer, R. & Baroni, S. turbotddft 2.0—hybrid
functionals and new algorithms within time-dependent density-functional perturba-
tion theory. Comput. Phys. Commun. 185, 2080–2089 (2014).

[2] Hutter, J. Excited state nuclear forces from the Tamm–Dancoff approximation to
time-dependent density functional theory within the plane wave basis set frame-
work. J. Chem. Phys. 118, 3928–3934 (2003).

[3] Handy, N. C. & Schaefer, I., Henry F. On the evaluation of analytic energy deriva-
tives for correlated wave functions. J. Chem. Phys. 81, 5031–5033 (1984).

[4] Guzzo, M. et al. Valence electron photoemission spectrum of semiconductors: Ab
initio description of multiple satellites. Phys. Rev. Lett. 107 (2011).

[5] Caruso, F., Lambert, H. & Giustino, F. Band structures of plasmonic polarons.
Phys. Rev. Lett. 114 (2015).

[6] Romaniello, P., Bechstedt, F. & Reining, L. Beyond the GW approximation: Com-
bining correlation channels. Phys. Rev. B 85 (2012).

[7] Ren, X., Marom, N., Caruso, F., Scheffler, M. & Rinke, P. Beyond the GW approx-
imation: A second-order screened exchange correction. Phys. Rev. B 92 (2015).

[8] Vacondio, S., Varsano, D., Ruini, A. & Ferretti, A. Numerically precise benchmark
of many-body self-energies on spherical atoms. J. Chem. Theory Comput. (2022).

[9] Maggio, E. & Kresse, G. GW vertex corrected calculations for molecular systems.
J. Chem. Theory Comput. 13, 4765–4778 (2017).

[10] Kutepov, A. L. Electronic structure of van der waals ferromagnet CrI3 from self-
consistent vertex corrected GW approaches. Phys. Rev. Mater. 5 (2021).

[11] van Schilfgaarde, M., Kotani, T. & Faleev, S. Quasiparticle self-consistent GW
theory. Phys. Rev. Lett. 96 (2006).

http://www.max-centre.eu 40

http://www.max-centre.eu

	Executive Summary
	Introduction
	Milestones

	Task 1: Portability and single node performance
	An abstraction layer for portability: DeviceXlib
	BigDFT
	FLEUR
	Quantum ESPRESSO
	SIESTA
	yambo

	Task 2: Parallel efficiency
	BigDFT
	FLEUR
	Quantum ESPRESSO
	SIESTA
	yambo

	Task 3: Maintenance, sustainability and deployment
	Task 4: Interoperability and exascale workflows
	New property calculators and capability enhancement
	Quantum ESPRESSO
	Siesta
	BigDFT
	Fleur
	Yambo

	Interoperability hooks, system interfaces, and other measures to enable workflows.

	Conclusions
	MaX codes' resume
	References

