
HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

D1.3

Second report on software architecture and
implementation planning

Stefano Baroni, Uliana Alekseeva, Augustin Degomme, Pietro
Delugas, Stefano de Gironcoli, Andrea Ferretti, Alberto Garcia,

Luigi Genovese, Paolo Giannozzi, Anton Kozhevnikov, Ivan
Marri, Davide Sangalli, and Daniel Wortmann

Due date of deliverable 31/5/2020 (month 18)
Actual submission date 31/5/2020

Lead beneficiary SISSA (participant number 2)
Dissemination level PU - Public

http://www.max-centre.eu 1

Ref. Ares(2020)2820375 - 31/05/2020

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type European Centre of Excellence in materials mod-

elling, simulations and design
EC Grant agreement no. 824143
Project starting/end date 01/12/2018 (month 1) / 30/11/2021 (month 36)
Website http://www.max-centre.eu
Deliverable no. D1.3

Authors Stefano Baroni, Uliana Alekseeva, Augustin De-
gomme, Pietro Delugas, Stefano de Gironcoli, An-
drea Ferretti, Alberto Garcia, Luigi Genovese, Paolo
Giannozzi, Anton Kozhevnikov, Ivan Marri, Davide
Sangalli, and Daniel Wortmann

To be cited as Baroni et al. (2020): Second report on software
architecture and implementation planning. Deliver-
able D1.3 of the H2020 CoE MaX (final version as
of 31/05/2020). EC grant agreement no: 824143,
SISSA, Trieste, Italy.

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal
sources or the necessary advice of a legal expert, where appropriate. All information in
this document is provided “as is” and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user, therefore, uses the information at its
sole risk and liability. For the avoidance of all doubts, the European Commission has no
liability in respect of this document, which is merely representing the authors’ view.

http://www.max-centre.eu 2

http://www.max-centre.eu
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

Contents

Executive Summary 4

1 Introduction 5

2 Libraries 5
2.1 Available production libraries . 6

2.1.1 LAXlib . 6
2.1.2 SpFFT . 8
2.1.3 COSMA . 8
2.1.4 DBCSR . 9
2.1.5 xmltool . 9
2.1.6 qe_h5 . 10
2.1.7 juDFT library . 10
2.1.8 SIRIUS . 11
2.1.9 libGridXC . 11
2.1.10 xmlf90 . 11
2.1.11 libPSML . 11
2.1.12 libFDF . 12
2.1.13 Lua Scripting Interface . 12

2.2 Libraries at beta stage . 12
2.2.1 FFTXlib . 13
2.2.2 KS_solvers . 13
2.2.3 LAPWlib . 13
2.2.4 DevXlib . 13

2.3 Proof of concept of oncoming libraries 15
2.3.1 LR_Modules . 15
2.3.2 IO-t . 15
2.3.3 libNeighb . 15
2.3.4 ELSI interface . 16
2.3.5 IO_Ylib . 16

3 Update on the APIs, factorisation, and interoperability 16

4 Conclusions and ongoing work 19

Acronyms 20

References 21

http://www.max-centre.eu 3

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

Executive Summary

This document updates the SDP [1] of the MAX flagship codes and libraries released
at month 6 (May 2019) and reports on the progress of the development of the MAX
libraries. The activities are generally on schedule with the plan presented in the SDP. An
update on the development of the libraries is presented in detail in section 2.

The work done on libraries up to this point provides us with a large number of actual
cases that have been useful to clarify and update the concepts and practices followed in
our development program. The main lessons learned are discussed in section 3. The
points discussed in this section are:

• Libraries and Modules. Together with the libraries completely encapsulated and
exchanging data only through the APIs, other code portions, the modules, have
been partially encapsulated but also access the global data structure of the code.
Libraries are more easily used in other codes while the modules strategy may be
more performing.

• Descriptors, structures, and data passing. Opaque handles are used when one
needs to enhance data encapsulation; Fortran data structures are used instead when
it is preferable to keep visible to programmers the content of descriptors and data
structures.

• Usage of dictionaries for more flexible APIs. Leveranging and extending the
implementation in the Futile library we are experimenting the usage dictionar-
ies for the realization of APIs with more flexibility in the types and number of
arguments.

• How to export interfaces. Most of the libraries keep the original interface expo-
sition via Fortran Modules, when it is important to avoid toolchain dependencies
the interfaces are exported using C style header files.

• Which build system to use Autoconf and CMake build systems are used in
most of our libraries. While the first one is more intuitive, CMake is more suited
for modular build systems.

• Usage of external libraries and collaboration with other projects The refactor-
ing has allowed to enhance performance also using libraries developed outside the
MAX project. In this context is important to promote the interaction with external
projects such as ESL and others.

http://www.max-centre.eu 4

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

1 Introduction

This document is an update of the Software Development Plan [1] (SDP), delivered at
month 6 (May 2019). We also report here the progress made in the plan implementation
within the first 18 months.

The SDP released at month M6 (May 2019) of the project designed an extended
refactoring of the MAX flagship codes, aimed at modularize functionalities, encapsulate
data structures and adopt general reusable APIs to access the functionalities and operate
on the data structures.

Such refactoring and modularization involved mainly the mathematical compute in-
tensive parts of the code and an utility layer that could allow the programmers to ac-
cess in an uniform and flexible way a set of basic functionalities that are needed ubiqui-
tously through all the code. This utility layer includes constructs for accessing MPI and
OpenMP parallelism, error handling, I/O operations. To cope with heterogeneous archi-
tectures based on accelerators, the utility layer is now being extended with new APIs for
masking the most recurrent constructs used to move, operate, and synchronize data in
multiple address spaces (see section 2.2.4).

In order to make such work on refactoring useful to a broader community the SDP
identified within the modularized functionalities those most suited for being distributed
as autonomous libraries and tools and whose development and release could proceed
alongside with the refactoring of the flagship codes. The SDP defined a set of criteria to
be fulfilled by the libraries and the APIs, mostly based on the concepts of autonomy and
efficiency. Depending on the advancement of the development the libraries are classified
as proof of concept, Beta stage, and production libraries.

We have organized this report in three sections. In section 2 we will report in detail
the status of our libraries. Then in section 3 we discuss the main issues, solutions, prac-
tices and general concepts that we have learned during these 18 months of development.
The concluding section 4 will summarize the plans for the next 18 months focusing on
what needs to be updated or added with respect to the first SDP.

2 Libraries

The MAX libraries provide a wide set of functionalities frequently used in electronic
structure simulation codes. These libraries, extracted from the flagship codes of the MAX
centre, are constantly updated and maintained by the developers of these codes and aim
to make the efforts of the center directly available to the developers of electronic structure
codes.

In many cases these libraries are derived directly from the extraction of the function-
alities already present in the flagship codes; this has caused redundancy in the coverage
of some of the basic functionalities. During the first part of the project we have cho-
sen to not unify the overlapping libraries because this could have represented a major
complication for the refactoring action.

Entering in the second stint of the project we have started to put more effort for
unifying these functionalities adopting common interfaces and when possible unifying
the packages in unique libraries. Notable example of this effort is the work done for the
LAXlib library (see section 2.1.1) for the unification of the linear algebra functionalities

http://www.max-centre.eu 5

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

extracted from FLEUR and QUANTUM ESPRESSO.
This section presents in detail an update of the status of the various packages devel-

oped in the first half of the projects. The development schedule of the libraries for the
first 18 month was presented in the SDP delivered at M6 in the D1.1 report [1], table 1
summarizes the current status and the planned development of the libraries in the next 18
months.

2.1 Available production libraries

2.1.1 LAXlib

Linear algebra operations are among the most compute-intensive parts of almost all MAX
flagship codes. In particular, the solution of a (generalized) Hermitian eigenvalue prob-
lem constitutes a significant challenge in many cases. As this is a well-defined and com-
mon mathematical problem, a large variety of libraries is available for its solution: from
the well-established BLAS and LAPACK library (and their parallel counterpart SCALA-
PACK) to vendor optimised implementations like Intel-MKL, AMD AOCL, IBM ESSL,
NVIDIA cublas and cuSolver, and more modern (and domain specific) approaches like
e.g. the ELPA library or the Elemental library. This zoo of solutions is partly due to
the fact that these libraries target different computational architectures and hence optimal
performance cannot be archived by using the same solver in all cases. Therefore, the
actual computational kernel for this problem is not our focus of attention but rather the
question of how to interface to these libraries efficiently and how to make these different
solutions easily available for our codes and for the community in general. This is the
main goal of the implementation of the LAXlib component in MAX .

We defined a rather simple API which exposes the different available solvers on a
unified high level interface such that our codes can easily exploit the library best suited
for the used architecture and problem size. For simplicity, we adopted two different data-
layouts in which the matrices can be provided. One set of routines that require the full
matrices to be provided and thus is suitable for small problems or shared memory setups
and routines that deal with distributed matrices stored across nodes in which we adopted
the SCALAPACK distribution scheme with the corresponding BLACS descriptors.

In addition to the computational routines, LAXlib also contains callback routines in
order to register code-specific timing as well as routines and error-handlers to allow for a
seamless integration into the code-specific infrastructure. The library is constructed with-
out explicit Fortran modules but with general include (header) files such that it imposes
no compiler specific dependencies in its usage.

The library is currently interfaced to the QE and the FLEUR codes. Possible adoption
is also foreseen for the Yambo code, e.g. to exploit the interface to ELPA. The solver
routines available in FLEUR and part of the effort to create a FLEUR-LA library have
also been integrated into the LAXlib such that the creation of an additional FLEUR-
specific library was no longer necessary and the development of the FLEUR-LA has
been abandoned in favour of the joint development reported here.

While the library is used in production already, work to implement interfaces for
further solvers is ongoing and some additional modifications for the efficient use of GPU
offloading and other compute concepts with non-trivial memory hierarchy are explored
and will be included in future versions of the library.

http://www.max-centre.eu 6

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

MAX libraries expected roadmap (M18-M36)
Library Group Month M18 Month M24 Month M36

FUTILE BIGDFT Production Production Production
PSolver BIGDFT Production Production Production
atlab BIGDFT PoC PoC Beta
libconv BIGDFT Production Production Production
bundler BIGDFT Beta Production Production
PyBigDFT BIGDFT Beta Production Production
sphinx-fortran BIGDFT Beta Beta Production
juDFT FLEUR Production Production Production
LAPWlib FLEUR Beta Beta Production
IO-t FLEUR Beta Beta Production
qe_h5 Q. ESPRESSO Production Production Production
xmltool Q. ESPRESSO Production Production Production
UtilXlib Q. ESPRESSO Production Production Production
FFTXlib Q. ESPRESSO Beta Beta Production
LaXlib Q. ESPRESSO Production Production Production
KS_solvers Q. ESPRESSO Beta Production Production
LRlib Q. ESPRESSO PoC PoC Beta

UPF_lib
Q. ESPRESSO

YAMBO
PoC Beta Production

XCfunc_Xlib
Q. ESPRESSO

YAMBO
PoC Beta Production

DevXlib
Q. ESPRESSO

YAMBO
Beta Beta Production

Driver_Ylib YAMBO PoC Beta Production
CoulCut_Ylib YAMBO PoC Beta Production
LA_Ylib YAMBO PoC Beta Production
IO_Ylib YAMBO PoC Beta Production
GridXC SIESTA Production Production Production
libPSML SIESTA Production Production Production
ELSI-interface SIESTA PoC PoC PoC
LibNeigh SIESTA PoC Beta Production
Lua scripting SIESTA Production Production Production
libFDF SIESTA Production Production Production
xmlf90 SIESTA Production Production Production
libDBCSR CP2K Production Production Production

Table 1: Expected Roadmap for the libraries development in the second 18 months of
the project. PoC : Proof of concept version, BETA: release candidate, Production:
interoperable library ready for release.

http://www.max-centre.eu 7

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

2.1.2 SpFFT

SpFFT is a 3D FFT library for sparse frequency domain data written in C++ with support
for MPI, OpenMP, CUDA, and ROCm. It was originally intended for transforms of data
with spherical cutoff in frequency domain, as required by some computational materials
science codes. For distributed computations, SpFFT uses a slab decomposition in space
domain and pencil decomposition in frequency domain (all sparse data within a pencil
must be on one rank).

To allow for pre-allocation and reuse of memory, the design of the library is based on
two classes:

• Grid: Allocates memory for transforms up to a given size in each dimension.

• Transform: Is associated with a Grid and can have any size up to the Grid maxi-
mum dimensions. A Transform holds a counted reference to the underlying Grid.
Therefore, Transforms created with the same Grid share memory, which is only
freed once the Grid and all associated Transforms are destroyed.

The user provides memory for storing sparse frequency domain data, while a Trans-
form provides memory for space domain data. This implies that executing a Transform
will override the space domain data of all other Transforms associated with the same
Grid. As a proof-of-concept SpFFT library was interfaced with FLEUR, Yambo, and
Quantum ESPRESSO. The SpFFT library is used in production in SIRIUS.

The API documentation is available here:
https://spfft.readthedocs.io/en/latest/?badge=latest

The library development is hosted here:
https://github.com/eth-cscs/SpFFT

2.1.3 COSMA

COSMA is a parallel, high-performance, GPU-accelerated, matrix-matrix multiplica-
tion algorithm that is communication-optimal for all combinations of matrix dimensions,
number of processors and memory sizes, without the need for any parameter tuning. The
key idea behind COSMA is to first derive a tight optimal sequential schedule and only
then parallelise it, preserving I/O optimality between processes. This stands in contrast
with the 2D and 3D algorithms, which fix process domain decomposition upfront and
then map it to the matrix dimensions, which may result in asymptotically more commu-
nication. The final design of COSMA facilitates the overlap of computation and com-
munication, ensuring speedups and applicability of modern mechanisms such as RDMA.
COSMA permits to not utilise some processors in order to optimise the processor grid,
which reduces the communication volume even further and increases the computation
volume per processor. COSMA is written in C++ with support for MPI, OpenMP, CUDA,
and ROCm.

In the past months the work to fully integrate the COSMA library in CP2K code
has been accomplished. Dependency on the COSMA library and pdgemm wrapper was
added to CP2K build tool-chain, all unit tests were verified and performance in produc-
tion cRPA runs of 128 water molecules has been measured.

http://www.max-centre.eu 8

https://spfft.readthedocs.io/en/latest/?badge=latest
https://github.com/eth-cscs/SpFFT
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

The library and documentation are hosted here:
https://github.com/eth-cscs/COSMA

2.1.4 DBCSR

DBCSR is a library designed to efficiently perform sparse matrix-matrix multiplication,
among other operations. It is MPI and OpenMP parallel and can exploit NVIDIA and
AMD GPUs via CUDA and HIP. DBCSR is used in production by CP2K code but can
also be interfaced with SIESTA and other codes that use localised basis set. In the past
months the work on auto-tuning of compute intensive GPU kernels of small matrix-
matrix multiplications has been accomplished and a ROCm port was added as library’s
back-end. A lot of documentation was written for the auto-tuning and predictive mod-
elling frameworks.

Documentation available here:
https://cp2k.github.io/dbcsr/develop/index.html).

The DBCSR library is hosted here:
https://github.com/cp2k/dbcsr

2.1.5 xmltool

This is a general purpose python tool that automatically generates the modules needed
for XML I/O for generic codes. The tool may be used by any Fortran code and depends
only on the given XSD schema; this latter is the only input needed and must be provided
using the XSD schema [2] language specifications.

This tool is released in production phase. Templates are currently provided only for
the FoX library, but they are in part reusable also with the xmlf90 library provided in
MAX components. Work is ongoing to leverage the xmlschema package to improve
maintananility and flexibilty. Further work on new templates in ongoing in order to
optimize the usage with xmlf90 and to implement the usage of C libraries like libxml
and gdome

The templace of the produced Fortran code is provided by a set of Jinja files. The
current templates generate 5 modules:

• types_module: contains the Fortran types, i.e. the type structure mirroring the
content of the XSD types as described by the schema provided in input.

• read_module: provides the read interface for the FoX implementation of the
DOM API. The interface accepts as argument a pointer to a DOM node, a struc-
tured data type corresponding to the element one wants to read, and an optional
error flag. For the reading to be successful the DOM node must point to an ele-
ment of the type corresponding to the Fortran type of the variable given as argu-
ment; if the error flag is present, the flag reports the success (0) or the failure of the
operation (6= 0), otherwise the failure causes a stop of the execution.

• write_module: provides the write interface containing the FoX instructions
to write the given XML element; the interface accepts as input a FoX descriptor to

http://www.max-centre.eu 9

https://github.com/eth-cscs/COSMA
https://cp2k.github.io/dbcsr/develop/index.html
https://github.com/cp2k/dbcsr
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

an open XML file and a Fortran structure containing the data to be written, together
with an optional error flag.

• init_module: provides the init interface. This interface is used to initialize a
Fortran data type corresponding to the XML elements; apart from the object which
one has to initialize, the other arguments depend on the content of the type.

• bcast_module: provides an interface to broadcast the content of a data type
element by element; the related MPI communicator is provided as argument to the
routine.

2.1.6 qe_h5

This small library provides a minimal, easy to use, API to write, read, and modify
HDF5 files. The APIs support read and write access to groups and datasets, and to
their attributes. It covers the use of all the main Fortran datatypes. The support for
the COMPLEX type is implemented just doubling the dimension in the first direction of
the datasets and reading/writing them as real. COMPLEX and REAL types are currently
assumed to be double precision. Strings are written as fixed length but the library is able
to read also variable-length strings, which guarantees compatibility with files written by
other codes.

The API provides descriptors for handling files, groups, and datasets. Passing these
descriptors, the interfaces allow for: opening and closing files and dataset; writing and
reading attributes; writing and reading datasets; reading and writing hyperslabs.

A description of the API may be found on the MAX gitlab repository 1

Ongoing work: A few improvements to the library are under way. We want to support
the following HDF5 features:

• single-precision datatypes;

• compressed datasets;

• parallel I/O.

We are also working to avoid the usage of the HDF5 Fortran modules, binding directly
the C routines in order to make linking to the precompiled library easier.

2.1.7 juDFT library

The juDFT-library has been separated from the FLEUR code, can be used and compiled
independently. It provides standard functionality used by FLEUR and other juDFT codes
for error-handling, timing, and the automatic collection of usage data of the code. Also
integrated is an easy-to use wrapper layer on top of HDF5 IO to enable the use of this
library without the need to use the low-level hdf5 interface. In particular, this wrapper
simplifies the handling of IO of array sections with the additional mapping of complex
data to the underlying HDF5 datatypes. While this HDF5 interface is widely used, it is

1https://gitlab.com/max-centre/components/qeh5_lib/-/wikis/
APIs-and-descriptors

http://www.max-centre.eu 10

https://gitlab.com/max-centre/components/qeh5_lib/-/wikis/APIs-and-descriptors
https://gitlab.com/max-centre/components/qeh5_lib/-/wikis/APIs-and-descriptors
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

an optional component of the library such that the juDFT-library can also be deployed if
no HDF5 is available on the system or is not needed.

2.1.8 SIRIUS

SIRIUS is a domain-specific software development platform for electronic structure cal-
culations. It implements pseudopotential plane wave (PP-PW) and full potential lin-
earised augmented plane wave (FP-LAPW) methods and is designed for GPU accelera-
tion of popular community codes such as Exciting, Elk, and Quantum ESPRESSO. SIR-
IUS is written in C++11 with MPI, OpenMP, and CUDA/ROCm programming models.
SIRIUS is organised as a collection of classes that abstract away the different building
blocks of the DFT self-consistent cycle.

The SIRIUS-accelerated Quantum ESPRESSO code is used in production at CSCS.
SIRIUS is also interfaced with the CP2K code extending its capabilities with full-potential
and pseudopotential plane-wave DFT solvers. In the past months the work on numerical
reproducibility of native Quantum ESPRESSO has been accomplished and a collection
of verification tests to benchmark QE-6.5 and QE-SIRIUS has been created. These tests
are hosted here:
https://github.com/electronic-structure/q-e-sirius-test,

SIRIUS is hosted here:
https://github.com/electronic-structure/SIRIUS

and the API documentation can be found here:
https://electronic-structure.github.io/SIRIUS-doc/

2.1.9 libGridXC

The GridXC library deals with the computation of the exchange and correlation ener-
gies and potentials in relevant real-space grids: parallelepipedic for 3D periodic systems
(including artificial periodicity) and spherically symmetric for atomic-like systems. Up-
dates to the building system and documentation have been carried out since M12. The
library is in production and stable. The next major user-facing upgrade will be the imple-
mentation of mgga functionality, and a new mechanism for extraction of derivatives of
various orders. This is going to need a refinement of the API, along the lines mentioned
in section 3 below.

2.1.10 xmlf90

xmlf90 is a suite of light-weight libraries to read and write XML documents in Fortran.
The library is in production, and stable. It is planned to upgrade the internal mechanisms
for string handling to remove some remaining hard-coded length limits. This new string
technology will be also used to upgrade the DOM subsystem of the library.

2.1.11 libPSML

This library is the main piece of the ecosystem of tools to handle pseudopotentials in
the PSML format (see http://esl.cecam.org/PSML). The library is quite stable, with the

http://www.max-centre.eu 11

https://github.com/electronic-structure/q-e-sirius-test
https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

API unchanged since its original release. As it makes heavy use of Fortran optional
arguments, a direct mapping of the interface to C would require Fortran 2008 plus the
TS 29113 extension. This is not yet advisable if we want to keep the library portable to
systems with varying degrees of standard compliance in their compilers.

2.1.12 libFDF

This library provides an interface for processing input files in the FDF format used by
SIESTA. Stable and in production for a very long time, but only recently extracted as a
independently released package. More documentation is being produced.

2.1.13 Lua Scripting Interface

Lua is an easy-to-learn and fast scripting language built for embedding. It is very lightweight
(its memory footprint is less than 300kB), and provides very simple ways to interface to
the data structures and routines of a host program. A Lua script, interpreted by the Lua
interpreter embedded in the program, can then control the flow of execution and the data.
Different user-level scripts can implement new functionalities, without recompilation of
the host code. The flook library enables Fortran and an embedded Lua interpreter to
communicate in a seamless way by passing variables to and from “tables” in Lua.

The strategy we have followed in SIESTA is based on handling control to the Lua
interpreter at specific relevant points in the program flow (e.g. at the beginning of a ge-
ometry step, at the end of a scf step, etc). Lua scripts implement handlers appropriate to
the point they want to hook into, and can request access to specific data structures. For
example, a script intended to implement a better scf mixing algorithm would be executed
after every scf step, inspecting the convergence data, and changing mixing parameters
or schemes, as appropriate. As another example, convergence checks over mesh-cutoffs
and k-point sampling can be performed automatically. The above mixing scenario exem-
plifies an important area of usefulness of the approach: the prototyping in Lua, (followed
eventually by a full implementation), of new ideas and algorithms.

We have implemented a number of custom molecular dynamics modes, geometry re-
laxation algorithms, and advanced optimization schemes, in a pure Lua library (FLOS).
The code in the library can be re-used, or taken as starting point for other implementations
by users. These user-level scripts can in turn be shared, opening the way to the develop-
ment of new functionality with faster turnaround that the traditional approach that needs
a careful integration into the program’s code base. As a specific showcase of the power
of the Lua embedding, we have developed a number of variations of the nudged-elastic
band method (NEB) for transition-state search. Previously proposed implementations in
SIESTA involved significant, hard to maintain code changes, and did not make it into
the mainstream version. With Lua, we have been able to implement, non-intrusively, not
only the standard algorithm, but a Double Nudged Elastic Band (DNEB) variation, and
also another version which treats atomic coordinates and lattice variables on an equal
footing (the variable-cell NEB, or VC-NEB, method).

2.2 Libraries at beta stage

http://www.max-centre.eu 12

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

2.2.1 FFTXlib

This is a high-performance specific library for performing FFT 3D operations than can
exploit different kinds of parallelism: pure MPI, hybrid MPI+OpenMP, hybrid MPI +
CUDA-GPU. It is currently at the beta stage. Work is ongoing for expanding the porta-
bility of the library; implementing mixed-precision support; implementing an API com-
plying with the specifications designed in the SDP.

The APIs are based on a general descriptor type which carries the information on FFT
mesh dimensions and its distribution over MPI tasks. The API provides then interfaces to
initialise the grid, query the presence of sticks or planes inside the MPI node and perform
FFT operations.

A full description of the APIs and the descriptors may be found on the MAX repos-
itory on GitLab 2

2.2.2 KS_solvers

This is a collection of iterative diagonalization algorithms to solve the Kohn-Sham equa-
tions. The iterative diagonalization algorithms collected inside the KS_Solvers are
disentangled from the specific Hamiltonian builder, which is called by the library as
an external routine; the definition of wavefunctions and their scalar products inside the
Hamiltonian builder must be compatible with the one used inside KS_Solvers. For
some of the algorithms, a Reverse Communication Interface (RCI) is also available, al-
lowing one to directly pass the H |ψ 〉 vectors to the library, leaving to the programmer
the task of computing and converting them to the format expected by the RCI.

The possibility of decoupling the KS_Solvers, LAXlib, and FFTXlib libraries
from their native codes was first demonstrated during a Workshop organized in 2017
within the ESL initiative [3]. Moreover, both KS_Solvers as well as LAXlib may
use another library maintained by ESL, ELPA (included in ELSI) for dense-matrix diag-
onalization.

2.2.3 LAPWlib

The refactoring of complex operations on LAPW wavefunctions that will lead to the cre-
ation of the LAPWlib is currently work in progress. Fundamental operations such as the
mapping between the muffin-tin representation of the basis functions and the interstitial
plane waves are already encapsulated and will be performance tuned for multiple archi-
tectures. In a similar state are routines for many of the complex eigenvector operations
needed for the hybrid functionals. For these operations a mix-product basis datatype was
introduced clarifying the needed datastructures. Most of the remaining work will be ded-
icated to the finalization of the API, the separation of the code into a library and its tuning
and porting.

2.2.4 DevXlib

Performance portability across current and future heterogeneous architectures is one of
the grand challenges in the design of HPC applications. General-purpose frameworks

2https://gitlab.com/max-centre/components/fftxlib/-/wikis/
APIs-and-descriptors

http://www.max-centre.eu 13

https://gitlab.com/max-centre/components/fftxlib/-/wikis/APIs-and-descriptors
https://gitlab.com/max-centre/components/fftxlib/-/wikis/APIs-and-descriptors
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

have been proposed [4, 5, 6, 7], but none of them has reached maturity and widespread
adoption. In addition, Fortran support is still very limited or missing entirely. In this
context, the MAX CoE is promoting and coordinating a collective effort involving the
developers of various materials modeling applications. Taking on this challenge with a
domain-specific approach has the advantage of providing abstraction and encapsulation
of a limited number of functionalities that constitute the building blocks of the most
common operations performed on the accelerators in this field. This will allow us to
prepare low-level architecture-specific implementations of a limited number of kernels
that have been already characterized and isolated, thus keeping the source code of the
various scientific applications untouched and reducing code branches when new systems
will appear on the market.

Such an effort is still in the early stages, but is under active development and is
progressively entering the GPU port of QUANTUM ESPRESSO through the so-called
DevXlib library. This library started off as a common initiative shared among MAX
codes (notably QUANTUM ESPRESSO and Yambo), aimed at hiding CUDA Fortran
extensions in the main source base. Being used by different codes, the library has been
rationalized and further abstracted, thus becoming a performance portability tool aimed
at supporting multiple back-ends (support to OpenACC and OpenMP-5 foreseen, direct
extension to CUDA C possible). The main features included in the library by design are
the following:

• performance portability for Fortran codes;

• deal with multiple hardware and software stacks, programming models and miss-
ing standards;

• wrap/encapsulate device specific code;

• focused on limiting code disruption (to foster community support).

It is important to note that part of the library design includes the definition of which
device-related abstract concepts need to be exposed to the scientific developers. To give
an example, memory copy and synchronization to/from host/device memory are abstract
operations that the developers of property calculators or of the quantum engine itself may
need to control directly. Therefore, DevXlib exposes such control in the form of library
APIs that are agnostic of the specific device back-end.

In practice, DevXlib provides the user with (i) interfaces to memory handling
operations including creation and locking of memory buffers (device_memcpy and
device_buffers); (ii) interfaces to basic and dense-matrix linear algebra routines,
similarly to BLAS and Lapack (device_linalg); (iii) interfaces to more domain-
specific operations (device_auxfuncs); (iv) device-oriented data structure compat-
ible with Fortran usage. In particular, memory handling allows the user to copy memory
host-to-host, device-to-device, and also across memories, host-to-device and vice-versa,
thereby dealing also with memory off-load and synchronization. Importantly, both syn-
chronous and asynchronous copies can be performed with explicit control. Moreover, the
explicit handling of memory buffers is meant to ease or avoid the procedure of allocation
and deallocation of auxiliary workspace.

http://www.max-centre.eu 14

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

2.3 Proof of concept of oncoming libraries

2.3.1 LR_Modules

This module at the moment kept at a module level. It is a more recent part of QUAN-
TUM ESPRESSO, whose encapsulation started about five years ago and progressed sig-
nificantly since that time. It intends to provide a unified , harmonic, flexible access
to the functionalities that are common to all linear-response and MBPT codes which
adopt a data structure compatible with the one adopted in the QUANTUM ESPRESSO
suite. LR_Modules contains the following functionalities: (i) definition of global
data structures for linear response, (ii) calculators of linear-response quantities (such
as e.g. response density and potentials), (ii) iterative solvers (e.g. Lanczos recursive
algorithms), (iii) response exchange-correlation kernel calculators, (iv) symmetrization
routines, (v) projectors on the empty-states manifold, to name a few. The functionalities
of LR_Modules are used in the following packages:

• PHonon for calculation of lattice vibrational modes (phonons), Born effective
charges, dielectric tensor, and other vibrational properties;

• TDDFPT for calculation of optical absorption spectra of molecular systems, col-
lective excitations in solids such as plasmonsand magnons;

• EPW for calculation of electron-phonon coupling, transport, and superconducting
properties of materials;

• HP for the first-principles calculation of Hubbard parameters of Hubbard-corrected
DFT.

The generalised and unified subroutines from LR_Modules have been refactored in
such a way that they can be easily and straightforwardly employed in any other future
linear-response or MBPT code of QUANTUM ESPRESSO or even in third-party codes.
They can now be used generically to build perturbations, apply them to the occupied
ground-state Kohn-Sham wave functions and compute the related self-consistent first-
order response properties either by solving the Sternheimer equations or by solving the
Liouville quantum equations using the Lanczos recursion method.

2.3.2 IO-t

Within the set of datatypes of FLEUR a subsection related to input- and setup-types has
been identified and the corresponding input has been reshuffled to reflect these data struc-
tures. The IO has been encapsulated directly with the data types ensuring consistency of
the IO and enabling the simple use of different formats. In a future step we plan to extend
this scheme such that flexible storage and communication of the data structures is made
possible and to integrate this with a flexible job management mechanism possibly also
interfacing a scripting feature.

2.3.3 libNeighb

The neighbor search library, originally a module within Siesta, is in the process of API
re-design to decouple it from the use cases in Siesta and make it more generally useful.

http://www.max-centre.eu 15

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

2.3.4 ELSI interface

The ELSI interface in Siesta is currently kept at the module level, and its functionality is
currently tailored to specific entry points in the program. Making it more abstract would
result in a general interface library to ELSI for Siesta-like codes (i.e., codes with sparse
Hamiltonians and overlap matrices, stemming from the use of strictly localised orbitals
as basis sets). However, the ELSI library itself is providing more and more hooks for
sparse operation in its API, so the usefulness of our planned wrapping is diminishing.
Further work on the abstraction has stopped.

2.3.5 IO_Ylib

In the process of modularization of the yambo code we extracted the low level subroutines
which take care of the I/O. The yambo code takes advantage of NETCDF+HDF5 libraries
for the I/O of the binary data. However the explicit calls to the NETCDF API are localised
in very few subroutines, namely io_bulk.F and io_elemental.F, which are then called by
other subroutines. These two subroutines have few dependencies and, together with the
associated module, mod_IO.F have been isolated and we have modified the configure so
that the resulting libio.a can be compiled independently of all the other subroutines of the
code. Starting from this step we plan to work on the subroutines so that they can act as
a wrapper to different kinds of I/O schemes without the need of changing the rest of the
code. We have identified the possbile options: NETCDF+PNETCDF, NETCDF+HDF5,
HDF5, QE_H5+HDF5. In the past the same scheme was used to also support plain
fortran I/O, which was later dropped due to the many limitations compared to the present
NETCDF+HDF5 scheme.

A similar logical structure has been put in place to accommodate also the other li-
braries to be extracted from the Yambo code. These libraries are Driver_ylib (handling
of the code user command line interface), CoulCut_ylib (handling of Coulomb potential
cutoff techniques), la_ylib (linear algebra drivers). Overall, a dedicated git repository is
in place and the development of these libraries has been moved there. The goals are two
fold: on the one side to have a better handling of the growing complexity of the code
(ideally having separate versioning of the libraries and of the core code); on the other
side, some of these functionalities can actually be shared with other codes (think eg abut
the collection of Coulomb cutoff techniques, which can be easily shared with Quantum
ESPRESSO or other plane wave codes).

3 Update on the APIs, factorisation, and interoperability

Libraries and modules. Refactoring of the codes has enhanced the data encapsulation
and has defined effective and portable APIs. One notable result of this effort on refac-
toring are the large number of libraries that have so far reached the production or beta
release phase and can already be used in external codes with very small refactoring. The
data encapsulation and APIs definition of general APIs has also involved other parts of
the codes –which we will refer to as modules– that for computational efficiency maintain
access to main data structure of the program. Usage of such modules is in the current
stage thus more oriented towards codes having the same data structures, while for for
third party codes it would require a major refactoring. For many of the modules further

http://www.max-centre.eu 16

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

work is planned in order to reach the full encapsulation of the data structure fulfilling all
the authonomy criteria for the libraries.

Descriptors, structures, and data passing. Both for libraries and modules the APIs
effectiveness is enhanced adopting descriptors, data structures for passing parameters,
settings and all the input and output to and from the library or module. This is obviously
crucial for the libraries as all communication passes through the APIs; but it is also im-
portant for modules because effective APIs make them flexible, reusable, more intuitive,
and less bug prone. Depending on the case, in WP1 we have been adopting as descriptors
either opaque handles or Fortran data-structures.

Opaque handles are common practice for software engineering, they are used in well
established libraries as MPI, Scalapack, and HDF5. Handles are usually integers or inte-
ger arrays. The content of the handles can be used directly or as resource handles used to
manage records allocated inside the data structures of the libraries and modules. Opaque
handles must be initialized with an API call; the whole lifetime of the the structure:
creation, modifications and destruction are thus completely managed internally by the
library and protected by unchecked modifications.

While in the initial SDP [1] it was provided as general guideline to adopt whenever
possible opaque handles instead of Fortran data structures, during the development we
have found that in many cases the usage of Fortran data structures allows to maintain the
development at a more intuitive level and allows a more immediate debugging. For these
reasons, in modules and in beta-stage libraries Fortran data structures are still used, while
the adoption of opaque handles will be addressed when the APIs and the structure of the
codes will have reached the desired stability.

Interfaces via header files or Fortran modules. There are two main choices on how
our libraries export their interface: header files; Fortran modules. Most of the libraries
provided by the MAX WP1 are written in Fortran; the designed way to export their
APIs is thus via the Fortran modules. The modules provide a visible specification of the
variables and interfaces that has been imported; they also allow to expose with the desired
level of protection the data structure of the libraries, this is still necessary for modules
and for libraries not yet at the production stage. Fortran modules have the main drawback
to impose a strict toolchain dependence between the library and the programming code,
because modules must be compiled with a compiler compatible with the one used to
compile the main program.

Header files are instead the standard of C and C++ programming. They have several
advantages in term of portability and flexibility but render the import of interfaces less
visible. The usage of header files has been preferred in many of the compute-intensive
libraries e.g. LAXLIB whose performance is crucial and require a careful compilation
and tuning. The usage of header files is indeed instrumental for achieving tool-chain in-
dependence, although not sufficient, because tool-chain dependencies may be introduced
also by I/O operations or other system calls which thus should be avoided or properly ini-
tialized in so as they are fully compatible with the rest of the program. It is also possible
to use mixed approach writing a small interface module to be used by the hosting code
to import the interfaces. The interface module would import the headers from the library
and should be compiled together with the hosting code.

http://www.max-centre.eu 17

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

Other ideas in API design. One issue that is apparently closer to the scientific content
of a library but that affects more fundamental aspects of interfacing is the control of
options or required scientific use-cases. A case in point is the PSolver library, which
offers a wide range of options for solving the Poisson equation. Some of the options are
incompatible with each other, and there are many of them, so a traditional approach ("one
argument per option") would make the API unwieldy. More importantly, API changes
would be needed with every refinement of the underlying physical model, to add more
options. The solution adopted by PSolver is based on a dictionary of options, which is
passed as a single argument to the library. The dictionary can be serialized in YAML for
humans, and handled by the code with appropriate data structures.

The other data required by PSolver are typically standard arrays holding charge den-
sities, potentials, etc, which are always required and thus a fixture of the API. In other
libraries the number of pieces of domain data (typically arrays) needed on input or re-
turned on output depends on the use case. For example, in a library computing the XC
energy and potential (e.g. libGridXC), it might be possible to do it with various levels
("rungs") of theory: LDA, GGA, MGGA, etc. Each might require different input (gra-
dient of the density for GGA, gradient and laplacian of the density, and kinetic energy
density for MGGA, etc). Also, it might be possible to request various orders of deriva-
tives of the XC objects (again, potentially with respect to density, gradient, laplacian, etc).
In the general case one would end up supporting several dozen optional array arguments
in the API.

While it is in principle possible to extend the dictionary concept to hold pointers to
arrays in the "value" field, this might not be the best solution for the API. Instead, one can
consider a more abstract interface based on the concept of "calculation object" which is
fed, apart from appropriate physical options (maybe still with a YAML-based dictionary),
settings regarding the computation and the associated data. Schematically:

...
call init_xc_calc(calc)
call set_calc_level(calc,"GGA")
call set_calc_functional(calc,"PBE")
call set_calc_density(calc,rho(:,:,:))
call set_calc_gradient(calc,grad_rho(:,:,:))
call set_calc_output_vxc(calc,vxc(:,:,:))
...
call run_calc(calc)
...

In the above example, options and data links are performed by routines that modify in-
ternal data structures in the calc object. Those features not explicitly invoked retain
their default settings. Hence new features and functionalities can be implemented while
maintaining backwards compatibility. In Fortran, one could implement the above scheme
in a module holding the calc type definition and the associated routines. Modern stan-
dards (starting with the almost universally supported Fortran2003) offer the possibility
of encapsulating the functionality in an equivalent "object oriented" form, which might
have some advantages for code organization and clarity.

...

http://www.max-centre.eu 18

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

call calc%init()
call calc%set_level("GGA")
...

APIs following this concept have the added advantage of allowing concurrent exe-
cution, by eliminating global variables. One could have two instances of XC calculators
with different levels of theory, for example.

Build systems Two main build system have been used by our codes and libraries:
Autoconf and CMake. Autoconf works in a more intuitive manner, it is easier to
debug and, when needed, expert users can also modify manually the configuration files
produced by the tool. On the other hand the tool is conceived for a monolithic compila-
tion, inserting external submodules is cumbersome.

CMake is a more modern tool, conceived for a modular build system. This facilitates
the usage of submodules as well as the incorporation of the libraries as submodules. Its
usage and debugging is less intuitive as the build mechanism produces a large number of
configuration files that are difficult to edit manually.

4 Conclusions and ongoing work

In this first half of the project the development and release of the libraries has proceeded
as scheduled in the SDP and the planned targets have been reached. The criteria for
autonomy and interoperability proposed in the SDP have been an useful and affordable
guideline for the development.

A significant number of libraries, in production or in Beta stage, are now available for
external development and are instrumental to the thorough modularization of the flagship
codes.

Many of the libraries which are still at the proof of concept stage are already used
inside the flagship codes. In this case they are used as modules with only a partial data
encapsulation. Further work is ongoing on these libraries to improve the encapsulation
and the APIs in order that they can be used also outside of the original codes.

The compute intensive functionalities are now performed by domain specific math-
ematical libraries as for example FFTXlib, SpFFT for 3D FFT operations or LAXlib,
DBCSR and COSMA for parallel linear algebra. This has allowed to improve out perfor-
mance portability and has streamlined the porting to other HPC architectures concentrat-
ing the effort on the specific libraries.

We are working on this side to extend the compatibility between the APIs of the
different mathematical libraries and the portability to other architectures and backends.

The MAX library set now provides also a full fledged utility layer meant to provide
the programmers with a general architecture agnostic backbone for managing parallelism,
I/O, error handling, and timing. During these 18 months the necessity has also emerged
to include in the utilities an abstraction layer for masking all those operations needed
in heterogeneous architectures for the movement and the synchronization of the data
between the host device memory spaces. For this reason a new library, DevXlib has
been planned and is currently under development. A significant part of the effort in
the development of this library in the next months will be put in enabling the usage of
different backends.

http://www.max-centre.eu 19

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

Acronyms

ESL The Electronic Structure Library [8]. 4

HPC High Performance Computing. 19

SDP Software Development Plan [1]. 4–6, 19

XSD XML Schema Defininition [2]. 9

http://www.max-centre.eu 20

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.3
Second report on software architecture and implementation
planning

References

[1] Baroni, S. et al. First report on software architecture and implementation plan.
Deliverable D1.1 of the H2020 CoE MaX (final version as of 30/03/2019). EC grant
agreement no: 824143, SISSA, Trieste, Italy. (2019).

[2] https://www.w3.org/standards/xml/schema.

[3] Electronic structure library coding workshop: Drivers. trieste, july 10-21 2017.
https://gitlab.e-cam2020.eu/esl/ESLW_Drivers.

[4] Edwards, H. C., Trott, C. R. & Sunderland, D. Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Parallel
and Distributed Computing 74, 3202 – 3216 (2014).

[5] Zenker, E. et al. Alpaka - An Abstraction Library for Parallel Kernel Accelera-
tion (IEEE Computer Society, 2016). URL http://arxiv.org/abs/1602.
08477. 1602.08477.

[6] Matthes, A. et al. Tuning and optimization for a variety of many-core architec-
tures without changing a single line of implementation code using the alpaka library
(2017). URL https://arxiv.org/abs/1706.10086. 1706.10086.

[7] Hornung, R. et al. Asc tri-lab co-design level 2 milestone report 2015 (2015).

[8] ESL. URL https://esl.cecam.org/Main_Page.

http://www.max-centre.eu 21

https://www.w3.org/standards/xml/schema
https://gitlab.e-cam2020.eu/esl/ESLW_Drivers
http://arxiv.org/abs/1602.08477
http://arxiv.org/abs/1602.08477
1602.08477
https://arxiv.org/abs/1706.10086
1706.10086
https://esl.cecam.org/Main_Page
http://www.max-centre.eu

	Executive Summary
	Introduction
	Libraries
	Available production libraries
	LAXlib
	SpFFT
	COSMA
	DBCSR
	xmltool
	qe_h5
	juDFT library
	SIRIUS
	libGridXC
	xmlf90
	libPSML
	libFDF
	Lua Scripting Interface

	Libraries at beta stage
	FFTXlib
	KS_solvers
	LAPWlib
	DevXlib

	Proof of concept of oncoming libraries
	LR_Modules
	IO-t
	libNeighb
	ELSI interface
	IO_Ylib

	Update on the APIs, factorisation, and interoperability
	Conclusions and ongoing work
	Acronyms
	References

