
HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

D1.4

Second release of MAX software: Report on first
common APIs, data structures and domain-specific

libraries

Stefano Baroni, Augustin Degomme, Pietro Delugas, Stefano de
Gironcoli, Andrea Marini, Davide Sangalli, Daniele Varsano,

Fabrizio Ferrari Ruffino, Andrea Ferretti, Alberto Garcia, Luigi
Genovese, Paolo Giannozzi, Anton Kozhevnikov, Ivan Marri,

Nicola Spallanzani, and Daniel Wortmann

Due date of deliverable 30/11/2020 (month 24)
Actual submission date 30/11/2020
Final version 30/11/2020

Lead beneficiary SISSA (participant number 2)
Dissemination level PU - Public

www.max-centre.eu 1

Ref. Ares(2020)7219457 - 30/11/2020

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type European Centre of Excellence in materials model-

ing, simulations and design
EC Grant agreement no. 824143
Project starting/end date 01/12/2018 (month 1) / 30/11/2021 (month 36)
Website www.max-centre.eu
Deliverable no. D1.4

Authors Stefano Baroni, Augustin Degomme, Pietro Delu-
gas, Stefano de Gironcoli, Andrea Marini, Davide
Sangalli, Daniele Varsano, Fabrizio Ferrari Ruffino,
Andrea Ferretti, Alberto Garcia, Luigi Genovese,
Paolo Giannozzi, Anton Kozhevnikov, Ivan Marri,
Nicola Spallanzani, and Daniel Wortmann.

To be cited as Baroni et al. (2020): Second release of MAX soft-
ware: Report on first common APIs, data struc-
tures and domain-specific libraries. Deliverable
D1.4 of the H2020 CoE MaX (final version as of
30/11/2020). EC grant agreement no: 824143,
SISSA, Trieste, Italy.

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal
sources or the necessary advice of a legal expert, where appropriate. All information in
this document is provided “as is” and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user, therefore, uses the information at its
sole risk and liability. For the avoidance of all doubts, the European Commission has no
liability in respect of this document, which is merely representing the authors’ view.

www.max-centre.eu 2

www.max-centre.eu
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Contents

1 Introduction 5

2 Work on the different codes 6
2.1 Siesta . 6
2.2 QUANTUM ESPRESSO . 8
2.3 FLEUR . 11
2.4 YAMBO . 12
2.5 BigDFT . 19
2.6 CP2K . 22

3 Libraries 23
3.1 SPLA . 23
3.2 SIRIUS . 23
3.3 SpFFT . 25
3.4 COSMA . 25
3.5 DBCSR . 25
3.6 FUTILE library . 25
3.7 PSolver . 25
3.8 DevXlib . 25
3.9 XC_lib . 26

4 Conclusions and ongoing work 27

Acronyms 27

References 28

www.max-centre.eu 3

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Executive Summary

This report describes the M24 releases of the MAX flagship codes and focuses mostly on
their reorganisation as well as on the libraries extracted, developed, adopted within them.

The current structure of the codes and of the SIRIUS platform is described, together
with other general software improvements, in code-specific subsections. These subsec-
tions also provide a quantification, when applicable, of the work done so far in terms of
new libraries and submodules.

A full update on the status of the development of MAX libraries was already given
in the D1.3 deliverable at month 18. Most of the libraries have by then already reached
beta or production stages and most of the further performed activity consists in testing
and re-usage. The update on libraries status will thus mention only those cases for which
important changes in the structure and interfaces of the APIs have occurred in the last six
months.

Many of the actions reported in this document are directly related and provide input to
performance portability (WP2) and algorithmic improvement (WP3) activities. Results
reached on these sides are only reported in D2.2 and D3.3 documents, that have been
prepared together with the present one by the same code developers.

www.max-centre.eu 4

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

1 Introduction

MAX focuses on selected flagship codes: widely-used applications, based on rather di-
verse models, mainly oriented to structural, electronic, magnetic properties and to spec-
troscopies of materials from first principles, encompassing Density Functional Theory
(DFT) and Many Body Perturbations Theory (MBPT) methods. A description of the
main features of the flagship codes can be found on the MAX website at http://www.max-
centre.eu/codes-max.

The MAX flagship codes at M24 releases are strongly influenced by the actions taken
during these two years of the project. After the development and testing of the first year,
many of the results obtained by the MAX WPs are starting to appear in the production
versions.

• The modularisation and the creation on new libraries and interfaces planned in
WP1, have significantly improved the development sustainability and the flexibility
of the codes.

• For each code, the regular MPI/OpenMP version and the one for heterogenous
architectures are converging towards a common code base, if not already in place.
In particular, the high-level parts of the codes have been made more portable and
architecture agnostic with the introduction of new general interfaces for domain-
specific computational kernels. This part of the work proceeds as planned in WP2
and has been done in tight collaboration with the HPC experts from WP4 (exascale
& codesign).

• The adoption of the algorithmic improvements developed by WP3 either directly
or via libraries.

• Improvement of functionalities, interoperability and I/O to meet the requests com-
ing from WP5 (data) and WP6 (demonstration).

We will present the new releases in Sec. 2 describing the main improvements and
new features introduced in each code. We will focus on the structure and organisation
of the codes, the release of new applications, and the adoption of new libraries and in-
terfaces. Progresses and achievements on the performance portability and algorithmic
improvement sides are described in detail in the associated reports of WP2 (D2.2) and
WP3 (D3.3). We will thus mention such aspects only briefly.

As concerns libraries, a recent update was given at month 18 [1]. At that time a
significant fraction of the libraries had already reached a stable point (production or beta
stage) and most of the activity on them was dedicated to re-usage and testing. In Sec. 3
we thus provide an update only for those libraries that have undergone important changes
during this period. We also describe some new libraries that have been introduced in the
development plan only after M18.

In Sec. 4 we conclude the report summarising the progress and status of WP1 and
discussing the most important issues to be dealt with in the last year of the project, which
also constitute requirements or inputs for other WPs.

www.max-centre.eu 5

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Figure 1: Sketch of the modularisation of the Siesta program. Each bubble represents a library.
Dependencies are indicated by arrows, and logos at the end of a path show the MAX code in
which the libraries originate. Bubbles with double contours mark those libraries originating in
Siesta, and made available also through the Electronic Structure Library

2 Work on the different codes

2.1 Siesta

In the past year, the Siesta program has seen substantial enhancements. We report in
D2.2 the major milestone of GPU acceleration of the diagonalization solver, which was
achieved, following the spirit of separation of concerns, via the use of appropriate li-
braries. Work on modularisation, and on interface refactoring to enable further modular-
isation, has continued since M12. We can summarise the enhancements in the following
list:

• Incorporation of the PSolver library. This provides the important capability of
performing simulations without imposing periodic boundary conditions.

• Extension of the interfaces for creation of parallel distributions for the real-space
grid. This was needed to simplify the interface with PSolver, and also opens the
door to the use of alternative FFT libraries in Siesta.

• Refactoring of the OMM (Orbital Minimisation Method) linear-scaling capability,
using the sparse matrix-matrix multiplication library DBCSR and the general ma-
trix handling layer library MatrixSwitch. This is one of the actions featured in
WP3, and can have significant impact on the demonstrators of WP6 that deal with
systems with an energy gap in the electronic structure.

www.max-centre.eu 6

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

• Improvements in solvers:

– GPU-acceleration of the diagonalization solver. Further improvements from
work in the underlying libraries are automatically available to the code as the
appropriate interfaces are in place.

– Enabled parallel-over-k calculations for non-collinear spin.

• Performance increase for tall+skinny matrices in TranSiesta

• Further enhancements to the resilience of the code in massively parallel environ-
ments.

These developments have taken the modularisation of Siesta to a very significant
level, as can be seen in Fig. 1. The now very large number of potential dependencies of
the code calls for enhancing the flexibility and robustness of the building and deployment
system. This is a very demanding endeavour, but we are making progress by decoupling
the tasks of configuration management, the settings of options for compilation, and the
compilation and deployment, and handing them over to different tools. In particular, we
are using git submodules for the first task, and leverage the power of a pre-processor
for the second one.

www.max-centre.eu 7

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Figure 2: Code layers in QUANTUM ESPRESSO. The high-level code is constituted by property
calculators and quantum engines. The quantum-engine modules provide all those electronic
structure specific functionalities frequently used in the applications. The mathematical libraries
provide access to compute-intensive functionalities. Low-level utility libraries provide APIs for
the basic management of data, parallelism, timing and errors.

2.2 QUANTUM ESPRESSO

Since the qe-6.5 release at month 12 (M12), two further QUANTUM ESPRESSO ver-
sions have been released: qe-6.6 in July 2020 and in this M24 MAX release, tagged as
qe-6.7. In both cases a corresponding GPU-enabled CUDA Fortran version has been
made available at the same time. The GPU-enabled version has also undergone two more
minor updates in the same 12-month period. The synchronisation process of the accel-
erated version is now well-integrated in the development process and the two versions
are quickly converging towards a unified code base. In particular, it is now possible to
compile and use the GPU-enabled version also for usage on CPU’s of non-accelerated
platforms.

Code Organisation. The code has been progressively reorganised into different layers,
separating the high-level code of the applications, quantum-engines or property calcula-
tors, from the code parts that implement lower-level functionalities. Currently we have 4
different layers in the code as depicted in Fig. 2.

The application layer is constituted by partially independent "property calculators":

• PW, containing the pw.x quantum engine for self consistency, plus a set of related
property calculators;

• CPV, containing the cp.x quantum engine for performing Car-Parrinello ab initio
molecular dynamics;

• PP, containing a wide range of post-processing applications;

www.max-centre.eu 8

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

• atomic, providing an all-electron solver for atomic problems, plus utilities for
generating and testing pseudopotentials and PAW datasets;

• PHonon, providing applications for vibrational and dielectric properties of solids
using DFPT;

• TDDFPT, for computation of electronic excitation spectra using TDDFPT;

• HP, computing on-site and inter-site Hubbard correction terms to DFT using DFPT.

• EPW, computing electron-phonon interactions coefficients and related properties.

The application layer depends upon lower-level libraries and interfaces layers:

• A few domain-specific algorithmic modules:

– Modules, a general interface module containing many common functional-
ity calls;

– LR_modules, containing common functionalities for linear-response codes;

– UPFlib, described above.

• Computation-intensive mathematical Kernels KS_solvers, FFTXlib, LAXlib.

• UtilXlib: a low-level general utility library for environment initialization, tim-
ing, logging and error handling.

In total we have 8 application modules; 3 domain-specific algorithmic modules, 3
computation-intensive mathematical kernels that can be separately compiled and are part
of the MAX library bundle; one low-level utility library, also belonging to the MAX
library bundle. Soon after the current release the development version will also start
using the DevXlib library making the management of offloaded data transparent and
architecture agnostic. Similar abstraction will be also done for the computations of the
exchange-correlation functionals on 3D grids, which will be usage of the recently devel-
oped XC_lib.

Build system. autoconf has been updated and simplified. An alternative build sys-
tem based on CMake has been added. It streamlines the experimentation of MAX on
external libraries and provides a better integration with the spack tool and the explo-
ration of alternative toolchains. External libraries used by QUANTUM ESPRESSO are
being downloaded and collected into a single directory, external, and their version
control is done using git submodules.

Modularization. Most of the work has been done in libraries and interfaces with the
mathematical kernels, integrating the work done in WP2 for performance portability.

• LAXlib: it is no longer needed to include a fortran module, with related portabil-
ity problems, to call routines from LAXlib. Instead of a module, a file ’laxlib.fh’
is included, containing fortran interfaces. Descriptors have been simplified and are
no longer structures but simple integers.

www.max-centre.eu 9

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

• FFTXlib: the build and testing systems have been improved. It is now possi-
ble to choose at build time between the "pencil" (1D-1D-1D) and "slab" (1D-2D)
decomposition of 3D FFT grids.

• KS_Solvers: new iterative diagonalization algorithms ParO, PPCG, RMM-DIIS,
developed in the frame of WP3 actions, have been made available.

In addition, the first kernel of a new portable library of pseudopotential-related code,
UPFlib, has been released. A further XC_lib library of exchange-correlation related
code, fully supporting libxc, is close to be released.

New developments. are mostly in the field of Hubbard-corrected functionals and in
Density-Functional perturbation theory (DFPT), for which QUANTUM ESPRESSO pro-
vides an effective development base. Concerning the former, Hubbard inter-site V param-
eters (DFT+U+V) and multiple Hubbard U parameters per atom have been implemented
into several codes; the calculation of forces and stress has been extended to orthogo-
nalised Hubbard manifolds. Concerning DFPT, we mention in particular the implemen-
tation of the Sternheimer algorithm in the turboEELS code, the extension of the PHonon
code to the non-collinear case with magnetization, and the many improvements and ex-
tensions to EPW.

www.max-centre.eu 10

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

2.3 FLEUR

Work on the FLEUR code has centred around some more advanced refactoring with
the aim of improving the usability of the code, of separating property calculators from
the more computational intensive kernels and of incorporating new functionality. While
most of the effort focusing on performance optimisation and improvement or on new
functionality was done in collaboration with WPs 2 and 3, respectively, the refactoring
and modularisation effort is reported here.

In detail the new FLEUR release includes:

• A refactored property calculator framework.
The evaluation of spectral properties is one of the most frequently used tasks per-
formed after achieving self-consistency in a DFT calculation. Such calculations
include the output of bandstructure data, of integrated quantities like the density of
states as well as of more complex properties like MCD spectra or projections of the
data on particular regions of space. The corresponding code has undergone signif-
icant changes with the aim of creating a more homogeneous users experience, and
o f encapsulating the functionality for easier extensions and maintenance. A hier-
archy of corresponding programming objects has been created with a well-defined
API and corresponding IO.

• Restructuring the input generator of FLEUR.
As a simulation using the FLEUR code requires a large amount of simulation pa-
rameters to be specified, a dedicated input-generator is provided to create default
and recommended values for most of these parameters from simple structural in-
put. This pre-processing step was redesigned to allow for a clearer separation of
the different steps performed in setting up a FLEUR calculation. In particular,
tasks typically for an initial setup are moved to the pre-processing step to allow for
better automatisation of the calculations. This work was largely triggered by the
requirements identified in WPs 5 and 6.

• Modularisation of wavefunction operations.
One of the potentially most time-consuming operations the FLEUR code performs
is the evaluation of matrix elements of the exchange operator as needed for example
by hybrid functional calculations. One of the main objectives during the course of
this project is the implementation of an efficient set of routines for this code. The
required refactoring is close to being finished and the key routines of the LAPWlib
are being tested.

In addition, we continued our work to encapsulate the functionality as outlined above
into new and existing modules and libraries and also worked on including these libraries
into FLEUR. We are most strongly involved in the use and development of the LAXlib,
the juDFT and the LAPWlib, but also follow the developments of the DevXLib as well
as the various FFT libraries within MAX .

www.max-centre.eu 11

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

WhyPy PWscf

Dielectric
Matrix

HF, GW,
BSE

Yambo, Ypp, p2y, a2y...

(...)

Linear algebra
wrappers

Time
evolution

Integrators
IO & para
wrappers

FFT, BLAS,
LAPACK,
SLEPc

netCDF,
HDF5DevXlib

Figure 3: Code layers in YAMBO. The code can be driven directly or by using the whypy python
layer. The high-level code is constituted by main drives that use the Ydriver library. These
drivers call the second–level drivers that are quantum engines that perform property calculations.
These interact via the modular structure described later with the domani specific and low–level
libraries.

2.4 YAMBO

In the following we list the main actions and achievements accomplished during the
M12-M24 perdio (Dic 2019 - Nov 2020).

New Libraries. Stable, well-tested and portable sections of the code have been ex-
tracted and turned into standalone libraries. The process has been fully terminated for
the driver library (Ydriver) that is now hosted on a dedicated git repository. Ydriver
can now be self compiled and linked to a test program released with the library itself. A
similar process is undergoing for the I/O library (Yio).

Modularization

• FFT. In versions 4.x, YAMBO was able to accommodate only one FFT grid at a
time. This had some important consequences: it was difficult to manipulate and
impossible to adapt the grid size to the different code sections. Moreover any addi-
tion would have impacted on the already large infrastructure of data and variables
connected to the FFT operations. A dedicated module has been introduced to avoid
these limitations:
type FFT_t

character(schlen) :: name

www.max-centre.eu 12

https://github.com/yambo-code/yambo-libraries
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

integer :: NG_impose=0
(...)
#if defined _SP_FFT

integer :: XY_size =0
#endif
(...)

integer, allocatable :: R_inv_rotation(:)
integer, allocatable :: R_rotation(:,:)

#if defined _FFTQE
integer :: plan = 0
complex(DP), allocatable :: c(:)

#endif
#if defined _FFTW || defined _SP_FFT

integer(8) :: plan= 0
complex(DP), allocatable :: c(:)

#endif
#ifdef _CUDA

integer, allocatable ,device :: G_map_d(:,:)
integer, allocatable ,device :: R_inv_rotation_d(:)
integer, allocatable ,device :: R_rotation_d(:,:)
integer :: plan_d = 0
complex(DP), allocatable,device :: c_d(:)

#endif
end type

This module hosts different library–specific sections and can be loaded more than
once. This allows YAMBO to use simultaneously different FFT setups. More im-
portantly the FFT can now be passed as subroutine/function argument making spe-
cific sections of the code FFT–structure agnostic.

The new FFT module of YAMBO is gradually incorporating more libraries: FFTQE,
FFTW, SpFFT and it also has the CUDA support.

• Quasiparticles, real–time components and more. More and more structures of
the code have been enclosed in dedicated modules. In addition the inner structure
of selected module sources have been changed in order to include in a single mod-
ule file the following aspects: the module definition, the module allocation, and
the module deallocation procedures. In this way the use of the a given module is
greatly simplified. A clear example is given below:
module RT_occupations
type RT_occupation

character(schlen) :: KIND
(...)
end type RT_occupation
type(RT_occupation) :: RT_el_occ,RT_ho_occ,RT_ph_occ,RT_life_occ
contains

subroutine RT_occupation_clean(OCC)
(...)

end subroutine
subroutine RT_occupation_alloc(KIND,OCC,D1,D2)

(...)
end subroutine
subroutine RT_occupation_free(OCC)

(...)
end subroutine

end module

• Descriptors. YAMBO adopts an extensive use of output text files and intermediate
databases. Those are created and re-read during the simulation process in order

www.max-centre.eu 13

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

to save calculated quantities for post-processing and more. An enormous diffi-
culty, that also leads to an increasing complexity, is the storing of variables in the
databases in order to link them to specific calculation flows. The Yio library used
by YAMBO includes specific modules to write databases. In addition a new feature
has been coded: descriptors, objects handled via a dedicated module that encap-
sulate all database variables in a compact way. Descriptors are written to databases
and can be dumped to human-readable output files using a single call to a specific
routine. In this way the duplication of coding lines is greatly reduced.

• Simplified output module. The creation of output file has been greatly simpli-
fied by coding a new modular layer to the output engine of YAMBO. This layer
is based on the OUTPUT_simple module and on the OUTPUT_add_column
routine. In practice the routine can handle the entire opening, writing, closing
of the output file. An example of an output file creation and filling is given in the
following:
call OUTPUT_add_column("ph",action="open")
call OUTPUT_add_column("ph",TITLES=(/"Q-point","Branch "/),I_VALUES=(/iq,

il/))
call OUTPUT_add_column("ph",TITLES=(/"Energy"/),R_VALUES=(/ph_freq/),UNIT

="meV")
call OUTPUT_add_column("ph",action="write")
call OUTPUT_add_column("ph",action="close")

In this example and output file, o.ph is opened and filled with data distributed
in three columns. The third column, moreover, is written converting data units to
meV.

• Double-Grid support. The Double–Grid feature of YAMBO is a special algorith-
mic approach that allows one to improve the convergence with respect to the BZ
sampling by approximating the dependence on the number of k–points only in the
electronic energies, with the wavefunctions assumed to be smooth enough to be
taken out of the integrals. This feature is largely used in the code but, similarly, to
the FFT case it was hard coded and not modularised. In the latest YAMBO release
also this part of the code has been deeply rewritten and modularised.

• Parallel Structure. The parallel structure of YAMBO is extended and organised
in the form of multi-level CPU assignment. In each level of this pyramid, several
MPI communicators, indexes and variables are created. Taking in consideration
that some calculation flows involve up to 5 levels of MPI parallelism, it is clear
that the number of components of the parallel infrastructure of YAMBO can be very
large (close to one hundred). In order to simplify this structure we have introduced
a novel data structure that incorporates all components of a single parallel level.
We named this object a Parallel Scheme. Its structure is reported below:

! PARALLEL SCHEME ...
!========================
type PAR_scheme
type(MPI_comm) :: COMM_i
type(MPI_comm) :: COMM_a2a
type(PP_indexes) :: IND
integer :: ID
integer :: D(2)

www.max-centre.eu 14

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

integer :: N_ser
integer :: N_par
logical :: consecutive
integer,allocatable :: table(:)

end type
...

The components of this object are enough to fully define the parallelism of a given
environment. We have indeed a MPI communicator for inter-/intra-chain commu-
nications and a MPI index to distribute the workload. These schemes are compact
and can be passed as arguments of routine in such a way to fully define the parallel
environment of the routine. They allow for a flexible parallel coding and efficient
resource distribution.

Memory tracking. Memory tracking has been further extended and extensively used
within the code base; separate tracking of CPU and GPU memory has been implemented.
Moreover we have implemented a macro YAMBO_PAR_ALLOC_CHECK which keeps
track of the amount of memory required by all MPI task belonging to the same node
and checks if this fits the overall available memory on each node before each MPI task
performs the allocation. Below we show an example of the associated message in a
successful run
[MEMORY] Parallel distribution of BS_MAT on HOST wnode01 with size 4507.93 [Mb]

This is particularly useful because the user gets an error message directly from the code
in case not enough memory is available.

CUDA-aware Yambo. GPU-related implementation (already merged into the main
development branch) was cleaned up to make source files easier to read and maintain.
Source duplication was largely removed. Overall this was quite a global change to the
code base. See Deliverable D2.2 for more details about the actual strategies put in place.

Interfaces with other codes: p2y. The p2y interface has been further developed to
keep in sync with QUANTUM ESPRESSO (QE). Moreover, we added the ability to
read the QE xml file atomic_proj.xml where the projections of the wavefunctions
onto atomic orbitals are stored. This made possible the implementation of the projected
density of states (PDOS) at the GW level in the ypp utility.

External libraries.

• We updated the versions of the following external libraries which can be down-
loaded via the YAMBO configure script: SLEPC, PETSC, HDF5, NetCDF and
Scalapack.

• The YAMBO fortran interface with the SLEPC and PETSC library was upgraded,
since the previous version was not compatible with the newer libraries. Moreover
work is currently in progress (development branch not yet merged to main branch)
to further extend the interface. At present YAMBO uses SLEPC to solve the BSE

www.max-centre.eu 15

http://www.max-centre.eu/project-repository
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Yambopy

qepy schedulerpy scripts yambopy tutorials

dbs flows

Modules:

Pre/postprocessing of Quantum ESPRESSO.

Pre/postprocessing of Yambo.

Command line tool.

Manage HPC job submission.

Learn to use the modules with python

qepy:

schedulerpy:

scripts:

yambopy:

tutorials:

dbs: Pre/postprocessing of Yambo.

flows: Manage simulation flows.

In development: Whypy

Figure 4: Scheme of the yambopy/whypy modular structure.

eigenvalue problem with a recursive “Krylov-Schur” algorithm. The ongoing de-
velopment includes the use of an improved version with a “bcgs+jacobi” precon-
ditionig scheme, its extension to the non-Hermitian case and the use of alternative
algorithms such as “Generalized Davidson”.

• We added an interface to the Futile MAX library and to the yaml libraries which
are exploited to produce reports in Yaml format. The present implementation is still
preliminary. It can be activated compiling the code with the option -enable-yaml-output.

• We added pnetcdf to the libraries which can be automatically downloaded and
compiled via the YAMBO configure. pnetcdf+NetCDF is an alternative to the
HDF5+netCDF scheme to produce parallel I/O. We are currently testing its us-
ability in a development branch.

Whypy. Whypy is a python package that allows for pre- and postprocessing of Quan-
tum ESPRESSO (QE) and Yambo data as well as managing job runs with these two
codes. Its functionalities include:

• Input file parsing and generation

• Output parsing of human-readable, xml and netCDF databases

• Data analysis and visualisation

• Submit and manage simulations, both on local machines and HPC facilities

• Simulation flows

• Hackability: user-specific functionalities can easily be added into the code

Yambopy refers to the currently released package, while Whypy is the name of
the development version. Yambopy was originally started by Henrique Miranda and

www.max-centre.eu 16

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

then co-developed by himself, Fulvio Paleari, Alejandro Molina-Sànchez and Alexandre
Morlet. It has been featured in the hands-on sessions of the CECAM/Psi-k Yambo School
in Lausanne (April 2017) and the ICTP Yambo School in Trieste (January 2020).

Its purpose is to help QE/YAMBO users to automatise several repetitive processes (for
example convergence runs for materials science calculations) and to provide a single in-
terface for the various executables that comprise the QE/YAMBO packages. It consists
of a series of modules containing several python classes performing specific operations.
These modules can be imported into python scripts managed by the user. The current de-
velopment process aims at expanding the functionalities whypy provides, both in terms
of data analysis and available workflows, as well as a focus on simulation management
and data retrieval for many-body calculations via databases. A better integration with
the AiiDA package, meant to be a higher level layer wrt whypy, is also foreseen – an
interface is already present. In short, the main developmental goal is transforming the
whypy package into a python-powered, all-purposes and easy-to-use driver for QE and
YAMBO.

Test-suite. The YAMBO test-suite represent a key tool for the code development.
It is hosted on a dedicated repository and:

• it can run up to 4000 test runs of the code covering almost all the code features.

• the parallel environment can be fully controlled. The test-suite can run: in se-
rial, in parallel using a default workload distribution or looping over the parallel
configurations, by using OpenMP and/or CUDA.

• it is completely automatized and adjusted.

• it can be controlled remotely.

• the results are automatically uploaded on a public webpage.

The test-suite has been deeply revised and improved. We have created different
branches in order to boost its development.

The Git repositories. In order to accommodate the large development of the Yambo
source the Github Yambo Project has been enriched of new components:

• yambo-libraries: Yambo derived libraries organized in branches.

• yambo-minipy: minimal set of phyton scripts to automatize different operations of
the code.

• tutorials: comprehensive set of tutorials. These are fully documented on the Yambo
wiki page. They contains a detailed description of the code and a guided tour in
most of the code features.

• whypy: Whypy main development repository.

www.max-centre.eu 17

https://github.com/yambo-code/yambo-test-suite
http://www.yambo-code.org/robots/index.php
https://github.com/yambo-code
https://github.com/yambo-code/yambo-libraries
https://github.com/yambo-code/yambo-minipy
https://github.com/yambo-code/tutorials
http://www.yambo-code.org/wiki/index.php?title=Main_Page
http://www.yambo-code.org/wiki/index.php?title=Main_Page
https://github.com/yambo-code/yambo-whypy-devel
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

YAMBO v5.0. YAMBO 5.0 is a release with a major number change. This is due to a
number of different reasons. First of all the user interface significantly changed. We have
improved the user interface and in particular the keywords used by YAMBO to generate
the input file. For example to perform a BSE simulation now the user can use, in place
of the old
yambo -o b -k sex -y d
the new command
yambo -optics b -kernel sex -Ksolver d.
The old command line is still supported.

Moreover all features implemented in the YAMBO code were carefully checked, with
applications on real materials before their public release. In addition tutorials were pre-
pared to make easy for the user to learn how to use the new features. This implies, how-
ever, that some of the coded features wait a long time before being officially released.
With version 5.0 we decided to adopt a two step strategy. All developed features are
immediately made public and, moreover, the features which have gone through extensive
validation and for which the documentation is available are marked as supported. This
implies a number of new features entered in version 5.0. In the YAMBO code:

• finite-q BSE

• fxc TDDFT kernel obtained via MBPT

• spectral functions beyond the QP approximation

• ACFDT approach to total energy

• Extended features for electron phonon

• Magneto-Optical properties beyond the independent particles approximation (yambo_kerr)

• Fully self-consistent solution of the many-body problem with static self-energies
like COHSEX (yambo_sc)

In the ypp utility:

• automatic detection of high-symmetry points when plotting bands,

• calculation of the Eliashberg electron-phonon terms,

• extraction of carriers occupations from real-time simulations

• interpolation of excitonic bands

Due to the significant changes in version 5.0 we expect the release will need some
extra time to be fully stabilised and become robust for production runs. For this reason
we will guarantee the support of previous releases with bug-fixes. YAMBO 4.5.0 was
released at M12. Since then we have further tagged 4.5.1 (Feb 2020), 4.5.2 (Jul 2020),
4.5.3 (Aug 2020), as well as 4.3.3 and 4.4.1.

www.max-centre.eu 18

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

Figure 5: The compilation dependencies of the libraries in BigDFT suite. Upstream packages are
indicated in blue and green, for domain-specific and system libraries, respectively. The packages
of the consortium are depicted in yellow.

2.5 BigDFT

The code has further enhanced its modularity. Presently, the compilation of the BigDFT
suite is performed via a stacked layer of multiple libraries, most of them being developed
outside of the BigDFT consortium. We present in Fig. 5 an example of such compilation.
In the following paragraphs we will illustrate the status of the development of the libraries
that are internal to the BigDFT developers consortium.

The version 1.9.1 of the BIGDFT code has been released in December, 2020. With
this version, also the 1.9.2 and 1.9.3 releases are under preparation, and in their beta
stage. Several discussions have been made in the context of the restructuring of the code
that has to be performed such as to go in the direction of a programmatical approach to
the inner part of the SCF loop.

FUTILE and PSolver

See Secs. 3.6 and 3.7 in Libraries.

atlab

The library has been also release with a cmake build system, which at present second
the already available autotools module. Both the approaches are therefore available. Like
the FUTILE library, we are presently working in a python module that should abstract
some of the operation on input positions and provides that to higher-level libraries like

www.max-centre.eu 19

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

from BigDFT import Calculators as C, Inputfiles as I
single_point=C.SystemCalculator()
inp = I.Inputfile()
inp.set_xc('LDA')
inp.write_orbitals_on_disk()
log=single_point.run(input=inp,posinp='mol.xyz')
print (log.energy)

Figure 6: SystemCalculator: the Aiida CalcJob equivalent

PyBigDFT.

libconv

The libconv library is now stabilised and ready for integration in the code. The code
generation has also been tested on architectures like the Fugaku supercomputer.

PyBigDFT

As already presented in the M12 deliverable, this package is a collection of Python Mod-
ules that are conceived for pre- and post- processing of BigDFT input and output files.
Such modules are supposed to enhance the BigDFT experience by high-level approach.
Also, calculators and workflows are supposed to be created and inspected with modules
of the PyBigDFT package. This package is conceived as a set of Python modules to ma-
nipulate complex simulation setups in a HPC framework. Recent advances in PyBigDFT
have enabled the implementation and usage of new functionalities of BigDFT.

• The AiiDA BigDFT plugin has been inserted in PyBigDFT. It enables the remote,
asynchronous execution of a PyBigDFT workflow from a Jupyter notebook. For
each new production result of the BigDFT consortium, the calculations are trig-
gered and pre-postprocessed from PyBigDFT.

• The PyBigDFT API has been carefully checked with respect to the compatibility
with Python3 and Python2. Yet, the Python2 support will be soon declared as
obscolescent. Flake8 execution scripts are inserted in the continuous integration of
the library.

• Validation and verification techniques as per WP5 are now triggered entirely from
PyBigDFT.

• The PyBigDFT tools analysis has been coupled with established packages for the
simulation of biological systems that enabled the analysis of production results like
the complexity reduction framework explained in the WP6 demonstrators related
to BigDFT.

In Figs. 6,7,8 we present some snippets showing how to employ the APIs of Py-
BigDFT in conjunction with AiiDA calculators.

We have implemented the “traditional” flavour of AiiDA plugin.
pip install aiida-bigdft

www.max-centre.eu 20

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

from BigDFT import Datasets as D
hgrid_cv=D.Dataset('h_set')
for h in [0.5,0.45,0.4,0.35,0.3]:

inp.set_hgrid(h)
hgrid_cv.append_run(id={'h':h},input=inp,runner=single_point)

results=hgrid_cv.run()
energs=hgrid_cv.fetch_results(attribute='energy')

Figure 7: Dataset: a small equivalent of a Aiida WorkChain

from BigDFT import AiidaCalculator as A
study=A.AiidaCalculator(code="bigdft@localhost",

num_machines=1,mpiprocs_per_machine=1,
omp=1,walltime=3600)

%load_ext jupyternotify
%notify
hgrid_cv.wait()
>>> '0 processes still running'

Figure 8: AiidaCalculator * used to remotely submit the job

bundler

The Bundler package has now been merged with the jhbuild upstream version and unified
to the ESL package. Such package is defined from a fork of the Jhbuild package,1 that
has been conceived in the context of GNOME developers consortium. We are considering
the possiblity of submitting a Merge Request to the jhbuild developers to include our
needs in the GNOME development process. This package can now used as a ground basis
to develop a common infrastructure to compile and link together libraries for electronic
structure codes. We are still foreseeing new modification in its structure to enable, the
possiblity of a easier usage by the end user.

sphinx-fortran

The project has been made compatible with python3 and it is now used in the Continuous
Integration to build the documentation of the corresponding packages documented in the
sources.

1https://developer.gnome.org/jhbuild/

www.max-centre.eu 21

https://developer.gnome.org/jhbuild/
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

2.6 CP2K

CP2K code is heavily relying on the external libraries for its performance portability as
the code itself is written in a generic way without any architecture specific implementa-
tions. In particular, DBCSR and ScaLAPACK (as a source of distributed matrix-matrix
implementation pdgemm) libraries must exhibit a decent performance on a given plat-
form in order for CP2K to achieve a fast execution in O(N) and RPA types of calculation.
AS such, the effort of optimising and porting CP2K to new architectures was channelled
to the performance tuning of DBCSR and COSMA libraries. COSMA is a new library
developed at ETHZ which implements communication-optimal matrix-matrix algorithm
and provides a corresponding pdgemm wrapper natively used by CP2K.

www.max-centre.eu 22

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

H

= =

Figure 9: Stripe-Stripe-Block (left) and Stripe-Block-Stripe (right) distributed matrix multiplica-
tions supported by SPLA.

3 Libraries

3.1 SPLA

SPLA (Specialized Parallel Linear Algebra) domain specific library has been developed
at CSCS. The library takes care of the two special matrix-matrix multiplications arising
in the iterative solvers for plane-wave DFT codes (see Fig. 9 for the details). In the first
case, two tall-and-skinny matrices representing wave-functions are multiplied together
to form a matrix of inner products. Wave-functions are distributed in stripes between all
available MPI ranks. The final matrix has a 2D block-cyclic ScaLAPCK distribution. In
the second scenario, a transformation of wave-functions is performed using a 2D block-
cyclic distributed matrix.

SPLA provides functions for the above mentioned types of distributed matrix multi-
plications with specific matrix distributions, which cannot be used directly with a ScaLA-
PACK interface. All computations can optionally utilize GPUs through CUDA or ROCm,
where matrices can be located either in host or device memory. SPLA is written in C++
with MPI and OpenMP programming models and provides a C-interface which can be
used in the Fortran codes with the help of the ISO_C_BINDING module. SPLA is us-
ing CMake for building, it has a GitHub page,2, a documentation page,3 and a CI/CD
pipeline. The initial performance of the SPLA library was measured in a synthetic test
of three consequtive matrix-matrix multiplications with (M,N,K) = (10000, {4000, 8000,
12000}, 1000000) dimensions (see Fig. 9).

3.2 SIRIUS

SIRIUS API was refactored to contain only Fortran subroutines with the optional error
code parameter as last argument. If error happens on the SIRIUS side and the error code
parameter was provided by the main Fortran program, the error code will be returned
back and the calling program has to react. If no error code was provided, the library
will terminate with the error message. Also, the Fortran API is now generated from the
YAML markup, written inside a special comment block of SIRIUS. Example of such

2https://github.com/eth-cscs/spla
3https://spla.readthedocs.io/en/latest/

www.max-centre.eu 23

https://github.com/eth-cscs/spla
https://spla.readthedocs.io/en/latest/
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

36 64 100 144 196 256
Number of nodes

100

120

140

160

180

200

To
ta

l p
er

fo
rm

an
ce

 (T
FL

OP
/s

ec
.)

CPU pointers
GPU pointers

Figure 10: Initial performance of the SPLA in the matrix-matrix multiplication test on the hybrid
partition of Piz Daint. A GPU back-end was used. CPU and GPU pointers of A, B, and C matrices
were tested.

markup is listed below.

Markup description of the sirius_context_initialized API function:
@api begin
sirius_context_initialized:
doc: Check if the simulation context is initialized.
arguments:

handler:
type: void*
attr: in, required
doc: Simulation context handler.

status:
type: bool
attr: out, required
doc: Status of the library (true if initialized)

error_code:
type: int
attr: out, optional
doc: Error code.

@api end

*/

Generated definition of the Fortran interface for sirius_context_initialized API function:
!
!> @brief Check if the simulation context is initialized.
!> @param [in] handler Simulation context handler.
!> @param [out] st Status of the library (true if initialized)
!> @param [out] error_code Error code.
subroutine sirius_context_initialized(handler,st,error_code)
implicit none
!
type(C_PTR), target, intent(in) :: handler
logical, target, intent(out) :: st
integer, optional, target, intent(out) :: error_code
!
type(C_PTR) :: handler_ptr
type(C_PTR) :: st_ptr
logical(C_BOOL), target :: st_c_type
type(C_PTR) :: error_code_ptr
...

www.max-centre.eu 24

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

3.3 SpFFT

SpFFT is A 3D FFT library for sparse frequency domain data written in C++ with support
for MPI, OpenMP, CUDA and ROCm. SpFFT library is designed to work with electronic
structure codes. The library is published on a GitHub repository,4 its development is fully
finished and the library is ready for production.

3.4 COSMA

COSMA is a parallel, high-performance, GPU-accelerated, matrix-matrix multiplica-
tion algorithm that is communication-optimal for all combinations of matrix dimensions,
number of processors and memory sizes, without the need for any parameter tuning.
COSMA library is published on GitHub,5 its development is fully finished and the li-
brary is ready for production.

3.5 DBCSR

DBCSR is a library designed to efficiently perform sparse matrix-matrix multiplication,
among other operations. It is MPI and OpenMP parallel and can exploit Nvidia and
AMD GPUs via CUDA and HIP. DBCSR library is hosted on GitHub6 and is ready for
production. In the M19-M24 period of the project the work on improving documenta-
tion, CMake build system, improving unit test coverage and unifying CUDA and ROCm
backends has been accomplished. A work on the exploration and utilization of tensor
cores (NVIDIA A100 cards) has been started.

3.6 FUTILE library

This library is in production stage since several months already. It has already been
employed in several codes like YAMBO and FLAME. We are presently working on the
release of a python package which includes the modules which are associated to the
operations performed by futile.

3.7 PSolver

The PSolver library is also released in production stage and can be installed indepen-
dently.

3.8 DevXlib

DevXlib has been maintained and further updated to consolidate the explicit handling of
memory transfer (host/dev/dev/host,dev/dev,host/host) and the seamless GPU-acceleration
of simple computational kernels. Besides a stable branch, that is explicitly used by
QUANTUM ESPRESSO and YAMBO, a development branch has been dedicated to the
support of different programming models, notably OpenACC, OpenMP5, and some ex-
plicit handling of the CUDA library. At the moment work on possible usage styles and

4https://github.com/eth-cscs/SpFFT
5https://github.com/eth-cscs/COSMA/
6https://github.com/cp2k/dbcsr

www.max-centre.eu 25

https://github.com/eth-cscs/SpFFT
https://github.com/eth-cscs/COSMA/
https://github.com/cp2k/dbcsr
https://github.com/eth-cscs/SpFFT
https://github.com/eth-cscs/COSMA/
https://github.com/cp2k/dbcsr
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

interplay of these models is ongoing, the final target being to support more than one back-
end for GPU-acceleration (with the idea of running on NVIDIA but also on AMD and
INTEL GPUs).

3.9 XC_lib

The calculation of the exchange and correlation (XC) energies and potentials is a frequent
and compute-intensive task that implies iterations of some given functional expressions
over many thousands of grid-points. To make the XC part architecture agnostic, it has
been isolated, encapsulated and refactored as an autonomous library which will be used
in future releases of QUANTUM ESPRESSO. The new library XC_lib collects all the
functional expressions classified according to their family and type (LDA, GGA, MGGA
for exchange and correlation). Internal driver routines use such modules to calculate the
value of the XC energy and potential for each point of the input charge density grid (and
relative gradient and laplacian, depending on the family). Drivers for the derivative of
the XC potential are included too.

The API exposed a few general wrapper routines that may access the internal drivers
and, if linked at build time, those of the Libxc library [2] and return the computed XC
energy and potential arrays as output. This setup should allow one to easily incorporate
other XC external libraries, if needed, just by extending the scheme adopted for Libxc.
Due to the highly parallelizability of the XC machinery, the porting to heterogeneous ar-
chitectures based on accelerator is relatively straightforward and has been partially done.
Different programming paradigms are currently explored in order to get the highest porta-
bility. A testing program that allows one to check every part of the library and to get
information about the available DFTs is under completion and it is included in XC_lib
too.

www.max-centre.eu 26

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

4 Conclusions and ongoing work

We have presented the M24 releases of the MAX flagship codes. In these new sta-
ble versions the codes have benefited from the many development actions undertaken
by WPs 1,2 and 3. In this document we have mainly focused on the achievements in
modularisation, interoperability, and library re-usage. It is though important to remark in
these conclusions that, even if reported in different documents, all development actions
have proceeded in a coordinated way. They are reciprocally instrumental to each other,
all aiming at the common goal of porting the MAX community codes to pre-exascale
(and exascale, in the longer run) machines and prepare them for intensive and automated
computations.

In all the codes the modularity has been significantly enhanced. There is a clear sep-
aration between the code parts that implement the different logical levels and function-
alities, as identified in the Software Development Plan (SDP) [3]. Many of the planned
libraries have reached a stable stage. They are now available for testing and re-usage.
Indeed in these new releases many MAX codes are using libraries extracted from other
MAX codes, also for the production versions, indicating that the modularisation and
cross exchange of software components is working. Moreover, MAX libraries have also
demonstrated an impact outside the consortium. The testing and experimental usage of
the libraries is giving an important feedback for improving the interfaces. For instance
the SIRIUS development platform presents in this release a set of refactored Fortran
APIs.

Apart from the actions of WPs 1,2,3 –directly related with the development– also the
work of other WPs has influenced the outcome of these releases. The development and
testing of computational kernels is a joint action of the code developers and WP4 ex-
perts. WP4 has also been crucial as a link with hardware and software vendors. The new
features and the improvements in interoperability have been decided and implemented
in close collaboration with WPs 5 and 6. We would also like to thank WP9 for the help
during these last months in organising the webinar series that allowed us to present many
of the novelties and improvements reported here to a wide audience of users. We want
finally to stress the many contributions coming from the developers. It is also for the sake
of these community contributions that the effort in keeping a unique code base is crucial,
and will probably be the most important challenge of the development activities of this
next year.

Acronyms

DFPT Density Functional Perturbation Theory. 9, 10

TDDFPT Time Dependent Density Functional Perturbation Theory [4]. 9

www.max-centre.eu 27

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.4
Second release of MAX software: Report on first common
APIs, data structures and domain-specific libraries

References

[1] Baroni, S. et al. Second report on softwarearchitecture and implementa-
tion planning. Deliver-able D1.3 of the H2020 CoE MaX (final version asof
31/05/2020). EC grant agreement no: 824143,SISSA, Trieste, Italy (2020).
URL http://www.max-centre.eu/sites/default/files/D1.3%
20Second%20report%20on%20software%20architecture%20and%
20implementation%20planning.pdf.

[2] URL https://tddft.org/programs/libxc/.

[3] Baroni, S. et al. First report on software architecture and implementation plan.
Deliverable D1.1 of the H2020 CoE MaX (final version as of 30/03/2019). EC grant
agreement no: 824143, SISSA, Trieste, Italy. (2019).

[4] Rocca, D., Gebauer, R., Saad, Y. & Baroni, S. Turbo charging time-dependent
density-functional theory with Lanczos chains. J. Chem. Phys. 128, 154105 (2008).

www.max-centre.eu 28

http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
https://tddft.org/programs/libxc/
www.max-centre.eu

	Introduction
	Work on the different codes
	Siesta
	Quantum ESPRESSO
	FLEUR
	yambo
	BigDFT
	CP2K

	Libraries
	SPLA
	SIRIUS
	SpFFT
	COSMA
	DBCSR
	FUTILE library
	PSolver
	DevXlib
	XC_lib

	Conclusions and ongoing work
	Acronyms
	References

