
HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

D2.1

First release of MAX software: report on the
performance portability

Daniel Wortmann, Uliana Alekseeva, Stefano Baroni, Augustin
Degomme, Pietro Delugas, Stefano de Gironcoli, Andrea Ferretti,

Alberto Garcia, Luigi Genovese, Paolo Giannozzi, Anton
Kozhevnikov, and Ivan Marri

Due date of deliverable 30/11/2019 (month 12)
Actual submission date 29/11/2019

Lead beneficiary JUELICH (participant number 4)
Dissemination level PU - Public

http://www.max-centre.eu 1

Ref. Ares(2019)7368756 - 29/11/2019

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type European Centre of Excellence in materials mod-

elling, simulations and design
EC Grant agreement no. 824143
Project starting/end date 01/12/2018 (month 1) / 30/11/2021 (month 36)
Website http://www.max-centre.eu
Deliverable no. D2.1

Authors Daniel Wortmann, Uliana Alekseeva, Stefano Ba-
roni, Augustin Degomme, Pietro Delugas, Stefano
de Gironcoli, Andrea Ferretti, Alberto Garcia, Luigi
Genovese, Paolo Giannozzi, Anton Kozhevnikov,
Ivan Marri, and Nicola Spallanzani.

To be cited as Wortmann et al. (2019): First release of MAX soft-
ware: report on the performance portability. Deliv-
erable D2.1 of the H2020 CoE MAX (final version
as of 29/11/2019). EC grant agreement no: 824143,
JUELICH, Germany.

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal
sources or the necessary advice of a legal expert, where appropriate. All information in
this document is provided “as is” and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user, therefore, uses the information at its
sole risk and liability. For the avoidance of all doubts, the European Commission has no
liability in respect of this document, which is merely representing the authors’ view.

http://www.max-centre.eu 2

http://www.max-centre.eu
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Contents

1 Executive Summary 4

2 Introduction 5

3 Exploration of computing architectures and code specific performance porta-
bility 5
3.1 Quantum ESPRESSO . 5
3.2 FLEUR . 7
3.3 Yambo . 9
3.4 BigDFT . 12

3.4.1 Poisson solver library . 12
3.4.2 Performance portability: BOAST generation of libconv sources . 13

3.5 Siesta . 13
3.6 CP2K . 14

4 Implementation of performance portable code 15

5 Performance prediction and adaptation of algorithms 19
5.1 Predicting QE execution time with A.I. tools 19
5.2 Profiling and auto-tuning for optimizing Total Cost of Energy of QE sim-

ulation . 20
5.3 Performance prediction of FLEUR . 22
5.4 Performance prediction of BigDFT . 22

6 Conclusions and perspectives 24

References 25

http://www.max-centre.eu 3

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

1 Executive Summary

This report summarises the efforts and the progress concerning performance portability,
made during the first 12 months of the MAX Centre of Excellence (phase 2). The results
are included in the corresponding releases of the flagship codes. According to the gen-
eral goals of WP2 and the MAX Software Development Plan, we focused on enhancing
the support for future and emerging computing architectures and on the development of
strategies to make performance available for codes and users.

A major focus in this first phase of the work was on the exploration of the chal-
lenges imposed by different computing architectures and the performance that was al-
ready achieved, as well as the identification of code in need and suitable for implementa-
tion of performance portable approaches. We basically followed two main thrusts: on one
hand, we investigated the MAX flagship codes and their most computationally relevant
parts, on the other hand we augmented this by a bottom-up study based on independent li-
braries and relevant computational kernels, including those developed in WP1. Concern-
ing computational architectures, a major focus was on GPU-based accelerators and the
corresponding programming frameworks like CUDA or ROCm. Additionally, we started
to investigate particular aspects related to the ARM architecture. Besides code sections
relevant for standard DFT tasks, our analysis also included computational workloads that
are relevant for beyond-DFT methods (such as GW), as implemented in YAMBO, or in-
cluded in terms of hybrid functionals in other flagship codes. As many of the kernels
involved in these approaches are computationally very demanding, several of them have
already been optimised for different computing architectures: we will continue to work
on their overall performance portability.

In summary, we implemented, investigated and demonstrated the efficient use of a
large diversity of current computing architectures and software development frameworks
for our codes and libraries as developed out of WP1. The most significant parts of our
codes already run on various of such platforms, including heterogeneous architectures,
and some parts already demonstrate satisfactory performance. Noticeably, a fully-fledged
GPU-aware implementation of GW is made available by the YAMBO v4.5 release. In the
future, the focus will shift to the unification of different platform-specific implementa-
tions, to the exploitation of the further performance optimisation opportunities that we
identified, and to the deployment of performance portable libraries and codes.

A second activity within WP2 is the development of auto-tuning tools, of software to
use different hardware efficiently, and of tools to monitor the performance of the codes
and to detect shortcomings. In this context, we have developed performance models for
some of the MAX flagship codes (QE, FLEUR, BigDFT). While these models are of
course of fundamental importance in the context of high throughput computing in WP5,
they also provide many valuable information on performance bottlenecks on particular
architectures, an optimal use of resources and some parallelisation strategies up to the
point in which the code can auto-tune such parameters. For example, the assignment
of available computational resources to different sub-tasks within a simulation run is
generally a complex problem depending on the physical details of the materials system
under investigation, on the properties to be evaluated, on the total resources available and
on their computational capabilities and hardware specifics. Our performance models are
thus an indispensable component to enable the efficient use of the performance-portable
kernels and solutions we develop.

http://www.max-centre.eu 4

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

2 Introduction

WP2 aims at the delivery of codes which offer optimised performance for existing and
emerging architectures with various levels of heterogeneity. Moreover, the codes should
deliver optimal performance regardless to which goal additional optimisation is adapted
to– be it energy-to-solution or time-to-solution. Moreover, all this optimisation richness
should be easily available to the end users, ranging from developers and HPC experts, to
academic and industrial application users.

The task of delivering performance optimised code requires both a detailed knowl-
edge of the involved codes and algorithms and a critical review of the status of the im-
plementation and the adaptation of new programming paradigms. Such performance
optimisation, once designed for a single architecture, is conceived now for many differ-
ent platforms, including currently available hardware, and able to precede the needs of
future concepts. Hence, to accomplish such ambitious goal, many steps out of which the
establishment of a firm code base with demonstration of high performance on various
architectures was a first focus.

The increasing diversity of computing platforms supported by our codes not only
imposes issues to the developers and motivates our quest for performance portable solu-
tions, but also challenges the users as it becomes increasingly difficult to assign the most
appropriate computational resources to a given simulation task. To overcome this obsta-
cle we started to build performance models dedicated to our codes to enable the user in
making well-informed choices regarding the setup of their simulations. We foresee that
this activity will develop into more automatic tools able to perform auto-tuning tasks.

This deliverable reports about the state-of-the-art of flagship codes in this context and
is divided in three sections. First, the outcome from the exploration of various computer
architectures, massively including heterogeneous systems, is presented. Then, examples
of performance portability achieved by several libraries are given. Finally, first results on
performance prediction and auto-tuning are presented.

3 Exploration of computing architectures and code specific
performance portability

First we report on the performance our flagship codes achieve on different computing
platforms and the corresponding implementations.

3.1 Quantum ESPRESSO

The QUANTUM ESPRESSO distribution may be compiled and run efficiently on all
systems based on hybrid MPI + openMP parallelism. In particular it has been exten-
sively tested on systems based on Intel, ARM, and IBM Power processors (see fig. 1 and
table 1). Since release 6.4.1, a fully functional version of pw.x – the main quantum
engine of QUANTUM ESPRESSO – can also be compiled and run on systems based on
hybrib MPI + GPU acceleration on architectures based on the CUDA GPUs. The porting
to such platforms has been done using the CUDA-FORTRAN programming model.

The acceleration of the two most compute-intensive kernels of pw.x, namely FFTXlib
for 3D FFTs and LAXlib for parallel linear algebra, has been found to be crucial for the

http://www.max-centre.eu 5

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 1: Speedup of QUANTUM ESPRESSO on different architectures equipped with NVIDIA
Tesla V100 cards. Courtesy of Josh Romero and Massimiliano Fatica from NVIDIA.

performance portability. Concerning the technical aspects of the porting, the LAXlib li-
brary on GPUs exploits the GPU-aware libraries provided by NVIDIA and PGI. FFTXlib
performs the acceleration at various levels depending on the size of the FFT mesh. If the
whole mesh fits into the memory of a single GPU, then a 3D FFT is performed directly
by the CUDA specific kernel for 3D FFT. If instead the mesh has to be distributed on
multiple MPI tasks, the GPU acceleration is obtained by performing local 1D and 2D
FFT operations and data is then scattered via MPI to complete the 3D FFT operation. In
order to reduce latency times, FFTs on wave functions are performed in batches, allowing
the code to overlap the MPI communications on one batch with the GPU FFT operations
on another batch.

The performance of pw.x on different machines for a selected benchmark case is
presented in table 1. Present CINECA HPC Cluster Marconi is compared with differ-
ent CPU+GPU setups. The comparison demonstrates a good performance portability of
pw.x towards hybrid systems based on accelerators. See also 1. As already discussed in
the D4.2 deliverable [1], the pool parallelism on k-points is completely portable and the
FFT parallelism performs quite satisfactorily. The most important concern for portability
is related to the parallel linear algebra used during the iterative Davidson diagonalisation.
The linear space on which linear algebra is performed in this case (the iterative space)
may become too large and parallel linear algebra can not be performed using a single
GPU device. Answers to this concern are expected from two sides. On the algorithmic
side we are working [2] at the development of alternative diagonalisation algorithms that
avoid an excessive increase of the iterative space. On the kernel side, the performance
portability will benefit by any specific kernel able to perform parallel linear algebra dis-
tributing the matrices on many GPU devices.

1https://gitlab.hpc.cineca.it/PPI4HPC/benchmark/tree/master/
QuantumESPRESSO

http://www.max-centre.eu 6

https://gitlab.hpc.cineca.it/PPI4HPC/benchmark/tree/master/QuantumESPRESSO
https://gitlab.hpc.cineca.it/PPI4HPC/benchmark/tree/master/QuantumESPRESSO
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Marconi Galileo Bench Bench Bench
system 1 system 2 system 3

nodes 64 12 16 16 4
Proc Xeon Xeon Xeon IBM Xeon

model PHI Haswell Skylake Power9 Cascadelake
cores 4096 192 320 256 64

GPU model - K80 V100 V100 V100
GPUs/node 0 2 4 4 4

GPUs 0 24 64 64 16
Time [sec] 3465 5880 540 617 2473

Table 1: QE performance on different architectures with and without GPUs and with different
processors and GPUs. Benchmark input is CsI with 96 atoms and 89 k-points.

3.2 FLEUR

The current (MAX -4) release of the FLEUR code already runs on different HPC plat-
forms by using optimised basic math libraries, by a portable build process with system-
specific build options and by specific implementations of computational relevant kernels
tuned for different architectures. In particular, the code sections discussed in detail in
WP1 and WP3 - like the matrix setup or the interface to the linear algebra - already take
into account the requirements of different hardware concepts and show reasonable per-
formance and scalability. To identify additional performance portability problems and
opportunities, we investigated the runtime of FLEUR on various machines and architec-
tures. We put the focus of our study on two aspects.

In the first line of study, we compared several machines with very similar comput-
ing architecture, all based on standard Intel Haswell server processors. In detail, we
performed timing runs on CLAIX 2016, a machine at the RWTH-Aachen University,
on the JURECA cluster module at the Juelich Supercomputing Center, on Hazel Hen,
a machine at the High Performance Computing Center Stuttgart and on SuperMUC at
the Leibniz-Computer Center in Munich. On each of these systems we performed sim-
ulations using different test setups developed in collaboration with the effort of WP4.
The timings for a single self-consistency cycle with different levels of parallelisation is
reported in Tab. 2. In addition we also investigated the Intel Skylake and Intel KNL
micro-architecture (Tab. 3). Here we used the CLAIX-2018 machine at RWTH, the
SuperMUC-NG in Munich for two different Skylake processors and the Booster mod-
ule of JURECA in Juelich for the KNL architecture.

The key findings of these simulations are:

• While the different systems show similar timings, there are also variations.

• The different systems show a slightly different scaling behaviour.

• Most of these differences can be tracked down to differences in network and IO
relevant operations.

• Performance of the FLEUR code is stable and reproducible on the Intel architec-
tures including very large setups (several thousands atoms).

http://www.max-centre.eu 7

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Machine CLAIX 2016 JURECA Hazel Hen SuperMUC
Chip E5-2650v4 E5-2680v3 E5-2680v3 E5-2697v3

#cores/node 24 24 24 28
Frequency, GHz 2.2 2.5 2.5 2.6

Perf./node, GFlops 840 960 960 1160
use case #nodes

GaAs 8 1622.32
512 16 943.45

atoms 32 685.31 588.7 623.32 636.21
64 403.99 446.84

TiO2 16 3657.68
1078 32 2172.22 1822.45
atoms 64 1295.6 1103.03 1149.45

128 860.49 769.49
256 620.36 580.73

TiO2 128 6235.64 5915.2 4468.9
2156 256 3814.74 3117.04
atoms 512 2477.9 2161.68

Table 2: Runtime in seconds for the test cases listed on the left of different Haswell machines.

While the performance tests reported so far concentrate on machines with Intel pro-
cessors using the Intel compiler tool-chain and partly very similar system design and
properties, in a second line of study we investigated the performance of the FLEUR code
on very different architectures. We hence performed additional investigations on a sys-
tem equipped with ARM-based processors, the Hi1616 processor as used in the JUAWEI
system in Juelich, and a node of the CLAIX machine with a NVIDIA GPU (Tesla P100).
Again, we used the Haswell and the KNL processors as reference. The detailed setups of
the different machines are listed in Table 4.

The timings of a test setup (NaCl,64 atoms, 1 k-point) on these four very different
computer architectures are listed in Table 5, detailing the whole self-consistency itera-
tion step as well as its most time-consuming constituents. All runs were exploiting only
shared-memory parallelism, i.e. one process were spawned onto all cores of every chip.
We found that the performance of the FLEUR code varies significantly across these ar-
chitectures. The theoretical peak performance of the ARM node is roughly 70% of that of
the Intel node (Table 4), but performance has dropped more than 5 times. This indicates
that our current implementation does not exploit the capabilities of the ARM architec-
ture sufficiently and additional performance tuning has to follow. Since we so far did
not implement any ARM specific code, we believe that the creation or adaptation of such
specialised kernels will enable increased performance in future.

The situation is somewhat different for the GPU version of the FLEUR code. Here the
two most computationally intensive parts of the code, matrix setup and diagonalisation,
are ported onto GPU. The timings of these parts, especially the diagonalisation, look
very promising: it is 3 times faster on a GPU node than on the Intel CPU. When the peak
performances are taken into account though (that of GPU being six times larger than
that of Intel CPU), the necessity of further investigation and optimisation becomes clear.
The extension of the GPU version to the remaining parts still poses a significant problem

http://www.max-centre.eu 8

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Machine CLAIX 2018 SuperMUC-NG JURECA Booster
Chip Xeon Plat. 8160 Xeon Plat. 8174 Xeon Phi 7250-F

#cores/node 48 48 68
Frequency, GHz 2.1 2.4 1.3

Perf./node, TFlops 3.2 3.69 2.83
use case #nodes

TiO2 16 2063.79
1078 32 1279.29 1347.26 1998.47
atoms 64 801.51 855.91

128 670.02 617.17
TiO2 64 6015.91
2164 128 4126.54 3508.69 8396.63
atoms 256 2915.11 2411.18

512 2428.89 1858.86
SrTiO3 128 8036.37
3750 256 8613.69
atoms 512 8983.76 9963.31

Table 3: Runtime in seconds for the test cases listed on the left for Skylake machines and the
KNL-Booster of JURECA.

Machine Chip # cores Peak Perf.
[Name] [Model] [GFlops]

Hazel Hen Intel E5-2680v3 24 840
CLAIX 2018 GPU Tesla P100 1792 5300

JUAWEI Hi1616 64 614
JURECA B. Intel Xeon Phi 7250-F 68 2830

Table 4: Four different computer architectures which simulations with FLEUR were compared
on.

to overcome in the next months as these parts contain a large variety of algorithms and
hence no simple porting strategy can be applied.

3.3 Yambo

The YAMBO code has been installed and tested on a large number of HPC architectures in-
cluding homogeneous multi-core systems and heterogeneous GPU-accelerated machines.
From the YAMBO 4.0 version on, a deep refactoring of the parallel structure has been put
in place in order to take full advantage of nodes with many-cores and a limited amount of
memory per core. In particular, a MPI multi-level (up to 3–5 according to the runlevel)
approach has been adopted, together with an OpenMP coarse grain implementation. Re-
cently an intense activity of porting on heterogeneous architectures, GPUs in particular,
have addressed the main kernels of the code. These include the subroutine computing
dipoles, Coulomb cutoff, Hartree-Fock, linear response, GW, and Bethe-Salpeter equa-
tion (BSE).

The porting on GPUs has been performed by using the CUDA-FORTRAN program-
ming model, which provides a native support for NVIDIA architectures. In particular

http://www.max-centre.eu 9

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Architecture Intel Broadwell GPU (Pascal) ARM Intel KNL
Compiler Intel 18.0 PGI 18.4 gfortran 7.3 Intel 18.2
Whole iteration, sec 36.54 123.34 192.38 50.69
Potential , sec 6.14 34.60 36.07 22.23
Matrix setup , sec 3.94 6.71 22.89 4.04
Diagonalisation, sec 18.54 6.68 118.34 14.51
Charge, sec 4.36 72.80 10.98 8.38

Table 5: FLEUR performance of a test case NaCl (64 atoms, 1 k-point, 1 self-consistency
iteration step). Timings of the whole iteration as well as of its most time-consuming constituents
are shown. For GPU, only matrix setup and diagonalisation are ported onto GPU.

Figure 2: YAMBO: Complete GW workflow for a defected H-TiO2 supercell (72+1 atoms).
Panels show the Optimisation of the MPI usage from version 4.3 to version 4.5 (the one currently
released). The first two graphs were reported in D4.2 showing the occurrence of a MPI-related
bottleneck (top left panel) and a partial fix to the problem (top right panel). A complete fix is
provided in the bottom panel (v4.5).

http://www.max-centre.eu 10

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Machine Chip Clock # cores GPUs Peak Perf.
[Name] [Model] [GHz] [model] [GFlops]

Marconi-A2 Intel Xeon Phi7250 KNL 1.4 68 – ∼ 3000
PizDaint Intel Xeon E5-2690 v3 2.6 12 P100 4760
Galileo Intel Xeon E5-2697 (BDW) 2.3 36 V100 7800
Corvina Intel Xeon Silver 4208 2.1 16 Titan V 7450

Table 6: Different computer architectures used to benchmark YAMBO.

Architecture Dipoles χ0 χ Σx Σc wall time
MARCONI-KNL 163 3601 9 197 3346 8014
Piz Daint CPU (pgi) 194 10191 7 317 5221 16631
Piz Daint CPU+GPU 168 1256 2 47 168 2075
Galileo CPU (ifort) 61 5402 6 107 645 6484
Galileo CPU (pgi) 233 6874 43 378 2703 10507
Galileo CPU+GPU 163 905 11 31 118 1451
Corvina CPU (pgi) 163 7321 5 221 3937 12239
Corvina CPU+GPU 142 993 3 35 114 1639

Table 7: YAMBO: Time-to-solution on different architectures for the AGNR-N7 use case. All
times are given in sec.

YAMBO makes large use of CUDA-FORTRAN cuf-kernel directives as well as of CUDA
libraries such as cublas, cufft, and cusolver. Overall, the porting strategy has been based
on reading and sotring DFT wavefunctions on the GPU memory (feasible since YAMBO

fully distributes at the MPI level such memory), making them available for heavy com-
putaitonal kernels. Similarly, the response function is also calculated and temporarily
stored on the card memory. As a design principle, in order to improve the performance of
the porting, the number of data-transfers between host and device have been minimised.
Then, reduction operations, such as those needed to compute quasi-particle corrections
are performed on the GPUs and the final results moved to the host memory and saved.
Overall, due to the modularity of YAMBO and to the use of devicXlib, the use of
CUDA-FORTRAN had a small impact on the code sources, the accelerated parts with
replicate sources being localised only in a few routines. Noticeably, the optimisation of
the code on the GPUs has also permitted to improve the performance of YAMBO on the
CPUs, for instance by reducing the execution time of the FFT_setup and the cutoff
Coulomb potential routines.

In Table 7, we report both the timing of the main routines (dipoles, non-interacting
response function χ0, reducible response function χ and the exchange (x) and correlation
(c) part of the self-energy Σ) and the wall-time for a complete GW calculation performed
for a AGNR-N7 graphene nanoribbon (see e.g. Ref. [3] for a related publication). In
particular, we compare the timing recorded for a calculation performed on a single node
of the MARCONI-KNL@CINECA with the ones obtained on heterogeneous systems
based on GPU accelerators, manely Piz Daint@CSCS (XC50 partition, nodes equipped
with NVIDIA Tesla P100 GPUs), Galileo@CINECA (node with NVIDIA Tesla V100
GPUs), and a local cluster (Corvina) equipped with Intel chips and NVIDIA TITAN V
cards. A more detailed technical description of the different machines is provided in Ta-

http://www.max-centre.eu 11

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

ble 6. The simulations on MARCONI-KNL and Galileo CPU-only have been performed
by compiling YAMBO with the Intel 2018 compiler while the PGI compiler (supporting
CUDA-FORTRAN) v19.x has been adopted for the simulations performed on hybrid ar-
chitectures. For all the considered systems, simulations have been performed running on
a single node and, for the hybrid systems, on a single GPU card.

Two main results emerge from the analysis of the timing reported in Table 7. The
first one concerns the performance obtained by YAMBO on the CPU. In this case the best
results are obtained when the code runs on Marconi@KNL (intel 2018 compiler) and
Galileo (ifort compiler) as a direct consequence of both the many-core architecture of
the processors and of the use of the Intel compilers and MKL linear algebra libraries.
The second main result concerns the timing recorded for runs performed on the GPU
cards, which point out a 5 to 10× (and even higher in some cases) speedup in the time-to-
solution for the ported kernels, in particular the most time consuming routines χ0 and Σc,
as well as for the wall-time. Most importantly, these data show an excellent portability
of a complete GW calculation as performed by YAMBO on heterogeneous systems based
on GPU cards, independently on the system architecture.

3.4 BigDFT

3.4.1 Poisson solver library

GPU accelerated Poisson Solver library has been deployed on the recently acquired Jean
Zay supercomputer, at the Institute for Development and Resources in Intensive Scientific
Computing (IDRIS), the major CNRS supercomputing center. Jean Zay’s GPU partition
is composed of 261 nodes, each one with 2*20 core CPUs and 4 NVIDIA V100 GPUs,
with Omni-Path networking, and NVlink for connecting GPUs. Our study was part of
a "great challenge" study, launched for the opening of the supercomputer to tackle large
scale problems, perform difficult computations, and stretch the limits of the platform, in
order to showcase its performance and also expose potential issues. For this challenge,
the target is to use the PBE0 hybrid functional of BIGDFT at large scale to compute Cad-
mium band gap in Cadmium Telluride, in systems 8 times more computationally costly
than previously performed. The target system was 216 atoms, and the main goal was
to classify the different possible geometries (with or without tellurium hybridization) by
energies for several charge states, in order to compare results with previously computed
data for smaller systems.

GPU to GPU communication is a critical performance bottleneck in most multi-GPU
codes. The Poisson Solver library developed as part of BIGDFT is able to use GPUDirect
RDMA communications to improve considerably the performance of computations. In
fact in this case, GPUs communicate directly with each other without performing costly
data transfers. GPUDirect in Jean Zay was setup and fixed several times during the great
challenge phase, allowing us to vastly improve computation times for our systems.

For benchmarking and performance tuning purposes, an H2O system with 96 atoms
was used. GPU results showed that without GPUDirect, single node performance of
exact-exchange on a 4-GPU run was just twice as efficient as the corresponding CPU
run, as communication costs between GPUs were preventing further improvements. With
GPUDirect setup, this computation is now 20 times faster than the CPU variant. This
particular system actually becomes too small for multi-nodes runs when GPUDirect is

http://www.max-centre.eu 12

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

activated, as scalability after 2 nodes is absent. This is not an issue, as the GPU part of
the computation has become negligible, and 128 orbitals PBE0 computations can now
be performed on a single node. Larger test systems are being run in order to provide
additional results.

3.4.2 Performance portability: BOAST generation of libconv sources

Libconv is a general convolution library meant to replace all convolutions in BigDFT
and be also provided as a standalone, autotunable, highly optimized version for other
developments to use. Autotuning strategies, used to select the fastest version of each
convolution kernel (according to its parameters and the underlying platform capacities)
are the core of the library, using BOAST domain specific language to express several
types of common convolutions, and generating thousands of versions of each one, which
are then benchmarked and selected for each platform. The use of BOAST allows the
end user and developers not to focus on tedious and potentially platform-specific opti-
mizations such as loop unrolling, efficient vectorization, intrinsics support, dimensions
permutations, etc. Supported platforms range from all Intel platforms with MMX, SSE
or AVX extensions, or KNL’s AVX512 extensions to 64 bits ARM CPUs with NEON
extensions, offering high performance at a fraction of the development cost. BOAST can
also export to GPU targets with OpenCL support, and will support CUDA in the near
future. We plan on exploring these capacities with libconv as well. Drawback from this
technique is that initial generation of the library can be long, as thousands of variants
will be tried out. But the generation is only performed once per system, and libconv
will be provided with a set of already tuned variants for generic platform types. Current
state of implementation is testing before integration in the BIGDFT code. The library
is mainly finished, and a small subset of the BIGDFT code has already been ported to
the new interface, and is being used as a prototype for integration and testing on various
platforms. Testing is being performed on various platforms in parallel, with Intel x86
systems, the KNL system Marconi at Cineca, or ARM boards with Cortex A53 cores, to
check correctness of the results and assess performance of the resulting implementation.

3.5 Siesta

In Siesta, the performance-portability is almost completely linked to the use of appro-
priate external libraries, as the lion’s share of the CPU time spent by the program is
associated to the solver part. As explained in the report for the D1.2 deliverable, we
have considerably extended the performance enhancement possibilities of the code by
the completion of the interface to the ELSI library of solvers. The performance enhance-
ments come in three significant fronts:

• Further levels of parallelisation: A feature common in principle to all solvers is that
the SIESTA-ELSI interface is fully parallelised over k-points and spins (no support
yet for non-collinear spin). This means that these calculations can use two extra
levels of parallelisation (beyond the standard one of parallelisation over orbitals
and real-space grid), see eg Fig. 3. In addition, the PEXSI solver, beyond a reduced
scaling (at most O(N2) for dense systems, and O(N) for quasi-one-dimensional
systems) offers two extra levels of parallelisation: over poles, and over trial points

http://www.max-centre.eu 13

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 3: Performance improvement from the use of the extra level of parallelisation over k-
points in Siesta using the ELSI interface with the ELPA solver, compared to the previous diago-
nalisation scheme (using both the standard Scalapack solver and the existing ELPA interface in
Siesta). The system is bulk Si with H impurities, with 1040 atoms, 13328 orbitals, and a sampling
of 8 k-points. The multi-k scheme is able to stay closer to ideal scalability for larger numbers of
MPI processes.

for chemical-potential bracketing. It can be used for large systems with very high
numbers of processors.

• Mixed-precision support: The ELPA solver can be invoked in single-precision
mode, which can speed up the initial steps of the electronic self-consistent-field
(scf) cycle. In fact, it has been shown that in Siesta one just needs to perform one
or two final scf steps in double precision to maintain the standard level of precision.
This leads to substantial CPU-time savings (see Fig. 4).

• Accelerator offloading: The ELPA library now offers GPU support in some ker-
nels, and further work in the ELSI project is expanding it to more kernels. It also
offers an interface to the accelerator-enabled MAGMA library. Finally, the PEXSI
developers are working on adding GPU support.

As reported earlier, there are ongoing efforts at BSC on tuning issues of MPI-GPU
offloading interoperability using low-level diagonalisation libraries for Siesta. The
new ELSI-related developments are more portable and already proven in pre-exascale
machines such as Summit at Oak Ridge National Laboratory in the USA. We will
then involve BSC in benchmarking and profiling the new functionality.

3.6 CP2K

CP2K code fully relies on the performance of the underlying libraries, in particular
DBCSR – a sparse matrix-matrix multiplication library. In this regard, the CP2K code
itself was not impacted by the development. All efforts were directed towards optimisa-
tion and tuning of DBCSR (see Fig. 10). The results of the full CP2K benchmark with
optimised DBCSR back end are shown on the Fig. 5. The runs were executed on the

http://www.max-centre.eu 14

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 4: Performance improvement coming from the use of the mixed-precision mode in the
ELPA solver. The system is a H-terminated Si quantum dot, with 1359 atoms and 14691 orbitals,
and convergence of the scf cycle takes 16 steps. CPU time savings of approximately 30% can be
obtained.

hybrid partition of Piz Daint supercomputer equipped with 12-core Intel Haswell CPU
and NVIDIA P100 GPU card. The full benchmark description is available on the CP2K
GitHub portal.2

4 Implementation of performance portable code

In addition to code closely tied to one of the flagship codes we also work on the imple-
mentation of performance portable libraries. Hence we here report on such activities of
which all codes within MAX and also the wider community could benefit. Performance
portability is one of the cornerstones of HPC today. Several GPU programming models
(CUDA, ROCm, OpenACC, OpenMP and OpenCL) coexist today, but none of them is
good enough for all the problems and one has to find a compromise between the difficulty
of writing a GPU specific code and a gained performance.

For example, CSCS is involved in the development of several libraries for electronic
structure codes: SIRIUS, DBCSR, COSMA and SpFFT. All these libraries were written
in C++ with CUDA programming model. The CUDA programming model allowed for a
quick migration to ROCm and now all these libraries are capable of running on NVIDIA
and AMD GPU cards thus ensuring both performance and portability. In the past 12
months the following developments have been completed at CSCS:

• SIRIUS library was ported to ROCm; the eigen-solver for AMD GPUs is still
missing, but this problem will be addressed by MAGMA library developers in
collaboration with AMD;

• SIRIUS library was tweaked to run on multi-GPU nodes (the case of Summit su-
percomputer at Oak Ridge);

2https://github.com/cp2k/cp2k/tree/master/benchmarks/QS_DM_LS

http://www.max-centre.eu 15

https://github.com/cp2k/cp2k/tree/master/benchmarks/QS_DM_LS
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

3236 48 64 128
Number of nodes

175

200

225

250

275

300

325

350

Ti
m

e
to

 so
lu

tio
n

(s
ec

.)

Figure 5: H2O DFT linear scaling calculation. The unit cell contains 20736 atoms in a 59
cubic angstrom box (6912 water molecules in total). An LDA functional is used with a DZVP
MOLOPT basis set and a 300 Ry cut-off. Time to solution is plotted.

• DBCSR library for sparse matrix-matrix multiplications was extend with automat-
ically tuned GPU kernels which are compiled “on-the-fly“ using CUDA’s Just in
time (JIT) capabilities;

• DBCSR library was ported to ROCm and JIT capabilities of ROCm were tested;

• DBCSR library was tweaked for multi-GPU node case;

• auto tuned parameters for P100, V100 and Mi50 GPU cards were added to the
DBCSR repository;

• COSMA library to perform communication optimal matrix-matrix multiplication
was ported to CUDA and ROCm programming models;

• p{d,z}gemm wrappers for COSMA library were implemented together with the
data layout transformation module;

• SpFFT library to perform sparse (in frequency domain) Fourier transforms which
are specific to electronic structure codes was written from scratch; the library has
CUDA and ROCm backends and is already integrated into SIRIUS code; SpFFT
is using GPU-friendly 1D-2D transformation decomposition;

• SpFFT library was tweaked for multi-GPU node case.

The results of benchmarks for SpFFT, COSMA and DBCSR libraries are presented in
Fig.6-10.

http://www.max-centre.eu 16

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 6: Strong scaling of the FFTXlib and SpFFT libraries measured with FFTXlib mini-app
on 1-16 multi-core nodes of Piz Daint.

Figure 7: Performance of the FFTXlib and SpFFT on a single node. MC: dual socket multi-core
node equipped with 18-core Intel Broadwells, GPU: hybrid nod containing 12-core Intel Haswell
and NVIDIA P100 GPU. Host-to-host: real-space data is transferred back to the host memory,
Host-to-device: real-space data remains in the GPU memory.

http://www.max-centre.eu 17

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 8: Execution time of SpFFT for various grid dimension sizes on Intel, NVIDIA, and
AMD architectures.

0

200

400

600

800

1000

1200

1400

1600

20000 40000 60000 80000 100000 120000

GF
lo

p/
s

Matrix Dimensions (square)

ScaLAPACK COSMA (CPU) COSMA (GPU)

Figure 9: Performance comparison of the ScaLAPACK and COSMA libraries in the square
matrix-matrix multiplication test. Performance per node is shown. The tests were run on 128
muli-core and hybrid nodes of Piz Daint.

http://www.max-centre.eu 18

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 10: Performance of DBCSR matrix-matrix multiplication kernels for several m,n,k triples
(x-axes) on the NVIDIA and AMD cards.

5 Performance prediction and adaptation of algorithms

In the last section of this report we focus on the performance prediction and our first
efforts on auto-tuning approaches to facilitate users of our codes to perform simulations
with optimal performance.

5.1 Predicting QE execution time with A.I. tools

The focus of this work was the prediction of execution times for QUANTUM ESPRESSO,
based on input data only. The approach follows Artificial Intelligence methods, in which
a large database of existing calculation is used as "training set" for a Machine Learning
procedure, aimed towards reproducing a specified target quantity (related to execution
time).

A dataset of approximately 5000 simulations, part of a screening procedure from
the Crystallography Open Database, has been selected. The dataset consisted mostly of
relatively small unit cells, involving a large part (72) of the elements in the periodic table.
The simulations were run on 8 compute nodes of different machines mostly at CSCS. For
a more detailed description of the dataset see the Materials Cloud archive.3 About 80 %
of the data was used for training, the remaining 20% for test. The time spent in routine
"cbands" of PWscf was used as the target to be reproduced. This is typically the most
time-consuming part of a self-consistent calculation. Three different Machine Learning
algorithms were implemented: Linear Regression (LR), Kernel Ridge Regression (KRR),
Fully Connected Neural Network (FCNN). The prediction model is based upon several
parameters that cover all the main factors affecting execution: type of machine and of

3https://doi.org/10.24435/materialscloud:2017.0008/v2

http://www.max-centre.eu 19

https://doi.org/10.24435/materialscloud:2017.0008/v2
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 11: QUANTUM ESPRESSO communication and computations phases classified accord-
ing to the length of the phase, larger or smaller than 500microsecond (500microsecond is the time
it takes for the CPU core to change its clock speed).

parallelisation, diagonalisation algorithm, size of the system (i.e., unit cell and number
of electrons) , basis set size.

The first results are very encouraging, especially for the FCNN model. A paper with
the description of the procedure and of the results obtained has been presented at the
PASC19 conference.4 More work is ongoing on further improvements, notably: enlarg-
ing the dataset and the size of the prediction models; use a more diverse dataset with
multiple code versions; extend the model to predict the number of iterations and other
properties.

5.2 Profiling and auto-tuning for optimizing Total Cost of Energy of QE
simulation

The hardware power management in nowadays processing elements is effective in re-
ducing the power consumption of idle resources. However, in large-scale MPI parallel
applications that fully utilize all the assigned processing elements, the logic of the hard-
ware power management lacks a global view of all the resources the application uses,
and is unable to exploit workload unbalance, synchronization, and communication slack
to save energy. To remedy this problem, the QUANTUM ESPRESSO team at Cineca
worked to enable a technology called COUNTDOWN 5 developed also thanks to FET-
HPC project (ANTAREX). COUNTDOWN exposes the same interface of a standard MPI
library and can intercept all MPI calls from the application on the one side, interacts with
the hardware power manager through specific events on the other side. COUNTDOWN
is endowed with profile capabilities which allow a detailed analysis of the application
performance (fig. 11) and monitor the energy/power consumed by the CPU and memory.

Based on these measurements, COUNTDOWN is able to change the frequency of
single cores within a CPU in application phases not requiring heavy CPU processing
(e.g. during an MPI barrier), and saving a significant amount of energy and reducing

4https://dl.acm.org/citation.cfm?doid=3324989.3325720
5https://github.com/EEESlab/countdown

http://www.max-centre.eu 20

https://dl.acm.org/citation.cfm?doid=3324989.3325720
https://github.com/EEESlab/countdown
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 12: Energy savings and overhead for two different value of "ndiag" linear-algebra paral-
lelisation parameter: EU optimal ndiag, NEU suboptimal ndiag.

the TCO (Total Cost of Energy) of the simulation. COUNTDOWN requires privileged
access to power management module of the linux kernel, that can be managed with a
specific module (msrsafe) developed by Livermore 6 to be installed in the target super-
computer. We use the Galileo PRACE Tier-1 system to perform the test and validation
of the COUNTDOWN library together with QUANTUM ESPRESSO using the msrsafe
kernel module (deployed in the Galileo Tier-1 cluster). We then demonstrate that for
large parallel QUANTUM ESPRESSO jobs, we can save up to 35% of the energy with a
minimal penalty in term of time to solution (fig. 12). The benchmark test case reproduces
a layered structure of Iridium, Cobalt and Graphene plus a molecular compound (iron-
phthalocyanine) deposited on top [4]. The whole simulation box includes 662 atoms and
3662 Kohn-Sham states. The total number of plane waves exceeds one million. During
the execution, the main memory occupation may peak at 2 to 6 terabytes depending upon
the selected parallelisation parameters.

As a conclusion of this proof of concept, Cineca plans to deploy this technology on
the Tier-0 system Marconi and the future EuroHPC system Leonardo. We then suggest
to have this energy consumption auto-tuning option for the future European exascale
systems, for all those applications that will be validated and enabled. It will be always a
user decision if a specific run should be executed with the power management activated.

6https://github.com/LLNL/msr-safe

http://www.max-centre.eu 21

https://github.com/LLNL/msr-safe
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

Figure 13: FLEUR model performance. The x-axis shows the measured runtime while the y-axis
shows relative error that the prediction causes. The horizontal line marks a deviation of 25%.

5.3 Performance prediction of FLEUR

A performance model of FLEUR able to predict the sequential runtime of a single FLEUR
iteration cycle has been created. A mix approach was followed while establishing the
model: on the one hand knowledge about the algorithms that FLEUR uses is taken into
account. On the other hand the code is partially considered as being a black box and run-
time measurements are analysed in order to find the influences on the runtime that were
not found by the first approach. The parameters of the model are the number of plane
waves, the number of atoms, the number of atom types, the number of valence elec-
trons, the number of local orbitals, the number of spins and whether the system is real
or complex. Since different parts of the code (i.e. diagonalisation, spherical and non-
spherical matrix setup, etc.) have different scaling behaviour, the model for the whole
self-consistency cycle is a sum of particular models for those parts.

Figure 13 shows the relative error in the prediction in relation to the actual runtime
measurement. While starting with a very high error from the measured runtime the error
decreases very fast with increasing runtime measurement. No computation has a relative
error of more than 50% and 96% of the data have a lower relative error than 25%. The
model can be adapted to new hardware etc. by measuring the runtime of well-chosen
training computations that were done on the new setup.

5.4 Performance prediction of BigDFT

The SimGrid framework [5] is a framework for developing simulators of distributed ap-
plications used to prototype, evaluate and compare relevant platform configurations, sys-
tem designs, and algorithmic approaches. This versatile scientific instrument has been
used for simulation studies in Grid Computing, Cloud Computing, HPC, Volunteer Com-

http://www.max-centre.eu 22

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

puting and P2P Systems. It has also been shown to be both more realistic and more
scalable than its major competitors, thus lowering the boundaries between research do-
mains.

BIGDFT has already been partly ported on top of SimGrid and very promising sim-
ulation results have been obtained [6]. The SMPI interface provided by SimGrid can be
used to replace any MPI library use in HPC codes at a very low cost, and simulate the
behaviour of the actual application on any potential platform. In the simplest case, com-
putation parts will be executed, benchmarked, and the resulted timings will be adapted
and injected on the simulated environment. This means that results will be preserved, and
this is necessary for codes with data-dependent behaviour. But this is also expensive both
in time and memory, as simulation is performed on a single workstation/computational
node.

SMPI provides ways to overcome such limitations, and replace repeated computa-
tional parts with none to minimal interference in the code. Large memory allocations
can be folded into smaller ones, shared between processes, in order to overcome memory
size limitations. Data is then rendered incorrect, but computation is still performed. This
allows to simulate HPC-sized systems on a personal computer. This can be done either
by flagging allocations that can be folded (to avoid folding control data that are neces-
sary for the execution and communication), or just by setting a threshold of size, above
which all allocations will be folded. In BIGDFT, the allocations are performed through
the futile library, which handles SimGrid shared allocations easily, allowing fine tuning
of such behaviour.

For computationally expensive parts, kernels can be emulated instead of computed.
The classical SMPI way of handling these parts is adding C sampling macros over ex-
isting loops, which will perform a sampling phase for the first iterations. In this phase,
the code is executed and benchmarked until a certain stability is reached. Then, the
remaining iterations are skipped, integrating the time in the simulation, instead of per-
forming the computations. This is not easily done in Fortran, as it relies heavily on the
C pre-processor. Another drawback is that the computed time that is integrated inside
the simulation is always the same for each subsequent call to the sampled kernel. In re-
ality, variability is a big part of computation, and a better accuracy is reached when this
variability is taken into account.

In this regard, we propose a novel approach for modelling the convolutions of BIGDFT.
Leveraging the modularity introduced by the usage of specialised libraries and the intro-
spection capabilities of the libconv library, a "libsimconv" variant of this library can be
generated easily from its BOAST representation. Indeed the convolution library already
computes and exposes the computational cost of each one of its internal operations and
is able to provide this information through a query mode. Adding a simulation mode
is hence easily performed, silently replacing the computation of the convolution by an
equivalent injection of time. Integrating the logic in the library will also allow to in-
tegrate reproducible noise models, to not only integrate a single amount of flops in the
timeline, but a realistically randomised one.

This work is currently performed within SimGrid to provide a simulated library
which would realistically emulate BLAS functions and could be linked instead of any
BLAS library for codes relying on it. For these, modelling is rather tedious, and results
depends on a huge number of parameters. A complex calibration phase is hence needed

http://www.max-centre.eu 23

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

to provide accurate yet simple performance models. Data measured on real-life plat-
forms is being fitted generically through Bayesian sampling with the Stan analysis tools,
allowing to infer such models programmatically and generate several realistic models for
each function. These various models can be used in the simulated library and provide an-
other level of realistic randomisation. For instance, each simulated processor could use a
slightly different model for each kernel, thus emulating real-life platform behaviour, with
some processors being slightly faster or slower than others.

With these tools, the performance prediction of codes such as BIGDFT can be both
accurate enough and fast enough to provide important information for developers. In the
case of BIGDFT, this would for instance translate in a tool to provide insight on which
parameters will yield fastest results on a given supercomputer before submitting any real
job on it. For example, studying the point at which linear scaling BIGDFT becomes
faster than cubic BIGDFT is an important goal to achieve.

6 Conclusions and perspectives

All the MAX flagship codes demonstrate their ability to run on a diverse set of differ-
ent hardware and software environments and in many cases the performance was already
significantly improved in the course of the project. A lot of attention has been devoted
to the porting to GPU-based accelerators and all codes can report improvements on their
performance on such systems. Importantly, fully fledged DFT and GW workflows can be
now performed on heterogeneous systems by using MAX codes. Moreover, the first ex-
perience on ARM based HPC architectures has currently been obtained and performance
portability issues to this specific hardware are being identified.

The future work within WP2 will focus on efforts to unify the different approaches
and to further extend the supported architectures. A particular focus will be put on the
challenges imposed by accelerator architectures beyond the NVIDIA/CUDA framework.
Here we foresee an increase in activities using OpenMP 5.0 and other new programming
paradigms. Profiting from the modularisation work in WP1 and actually in close synergy
we also plan to continue working on providing performance portability to the libraries
developed.

http://www.max-centre.eu 24

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.1
First release of MAX software: report on the performance
portability

References

[1] Cavazzoni, C. et al. First report on code profiling and bottleneck identification, struc-
tured plan of forward activities. Deliverable D4.2 of the H2020 CoE MaX (final ver-
sion as of 30/06/2019). EC grant agreement no: 824143, CINECA, Bologna, Italy
(2019).

[2] Genovese, L. et al. First release of MAX software: report on the identified actions,
update of the software development plan, and software release. Deliverable D3.2
of the H2020 CoE MaX (final version as of 30/11/2019). EC grant agreement no:
824143, CEA, France. (2019).

[3] Denk, R. et al. Exciton-dominated optical response of ultra-narrow graphene
nanoribbons. Nat. Commun. 5, 4253 (2014).

[4] Avvisati, G. et al. Orbital symmetry driven ferromagnetic and antiferromagnetic
coupling of molecular systems. Nano Lett. 18, 2268–2273 (2018).

[5] Casanova, H., Legrand, A. & Quinson, M. Simgrid: A generic framework for large-
scale distributed experiments. In Tenth International Conference on Computer Mod-
eling and Simulation (uksim 2008), 126–131 (2008).

[6] Bédaride, P. et al. Toward better simulation of MPI applications on ethernet/TCP
networks. In Jarvis, S. A., Wright, S. A. & Hammond, S. D. (eds.) High Performance
Computing Systems. Performance Modeling, Benchmarking and Simulation, 158–
181 (Springer International Publishing, Cham, 2014).

http://www.max-centre.eu 25

http://www.max-centre.eu

	Executive Summary
	Introduction
	Exploration of computing architectures and code specific performance portability
	Quantum ESPRESSO
	FLEUR
	Yambo
	BigDFT
	Poisson solver library
	Performance portability: BOAST generation of libconv sources

	Siesta
	CP2K

	Implementation of performance portable code
	Performance prediction and adaptation of algorithms
	Predicting QE execution time with A.I. tools
	Profiling and auto-tuning for optimizing Total Cost of Energy of QE simulation
	Performance prediction of FLEUR
	Performance prediction of BigDFT

	Conclusions and perspectives
	References

