Photoexcited metals can produce highly energetic hot carriers whose controlled generation and extraction is a promising avenue for technological applications. While hot-carrier dynamics in Au-group metals have been widely investigated, a microscopic description of the dynamics of photoexcited carriers in the mid-infrared and near-infrared Pt-group metals range is still scarce. Since these materials are widely used in catalysis and, more recently, in plasmonic catalysis, their microscopic carrier dynamics characterization is crucial. The authors employ ab initio many-body perturbation theory to investigate the hot-carrier generation, relaxation times, and mean free path in bulk Pd and Pt. The authors show that the direct optical transitions of photoexcited carriers in these metals are mainly generated in the near-infrared range. The authors  also find that the electron-phonon mass enhancement parameter for Pt is 16% higher than Pd, a result that helps explain several experimental results showing diverse trends. Moreover, the authors predict that Pd (Pt) hot electrons possess total relaxation times of up to 35 fs (24 fs), taking place at approximately 0.5 eV (1.0 eV) above the Fermi energy. Finally, an efficient hot electron generation and extraction can be achieved in nanofilms of Pd (110) and Pd (100) when subject to excitation energies ranging from 0.4 to 1.6 eV.

Cesar E. P. Villegas, Marina S. Leite, Andrea Marini, and Alexandre R. Rocha Phys. Rev. B 105, 165109

Type of paper:

Photoexcited metals can produce highly energetic hot carriers whose controlled generation and extraction is a promising avenue for technological applications. https://arxiv.org/pdf/2203.15922.pdf

© 2022, The Author(s)
 

https://doi.org/10.1103/PhysRevB.105.165109